Search for $B_c^+ \to \tau^+ \nu$

- an example of flavor physics at the Z pole

Fenfen An^{1,2}, Soeren Prell¹, Chunhui Chen¹ Jim Cochran¹, Manqi Ruan², Xinchou Lou^{2,3,4}

1. Department of Physics and Astronomy, Iowa State University, Ames IA, USA

2. Institute of High Energy Physics, Chinese Academy of Science, Beijing, China

3. Physics Department, University of Texas at Dallas, Richardson TX, USA

4. University of Chinese Academy of Science (UCAS), Beijing, China

CEPC Workshop, IHEP, Beijing Nov 13th, 2018

Outline

- Introduction
- Analysis strategy
- Event selection
- Similar analysis
- Summary and outlook

Introduction

Theory behind

 τ –channel, the only experimentally accessible leptonic decay due to helicity suppression

Introduction

NP search (charged Higgs)

E.g.: type II Two-Higgs doublet model (2HDM), replaces the W^+ propogator [Phys. Rev. D 48, 2342 (1993)]

 H^+ interferes with the SM process and contributes constructively or destructively

$$Br(B_c^+ \to \tau^+ \nu) = Br(B_c^+ \to \tau^+ \nu)_{SM} \times r_H$$
$$r_H = \left(1 - \frac{\tan^2 \beta \cdot m_{B_c}^2}{m_{H^+}^2}\right)^2$$

Constraint on $\tan\beta$ and m_{H^+} in the type-II 2HDM model

Current status

No measurements for $B_c^+ \rightarrow \tau^+ \nu$ so far

 $B^+ \rightarrow \tau^+ \nu$ results can cast light on B_c^+ study: similar feynman diagram, similar event topology, comparable production ...

 $\frac{N_{B_c^+ \to \tau^+ \nu}}{N_{B^+ \to \tau^+ \nu}} \sim O(1) \qquad \checkmark \qquad N_{B_{(c)}^+ \to \tau^+ \nu}: \# \text{ of } B_{(c)}^+ \to \tau^+ \nu \text{ decays generated at the Z pole} \\ \checkmark \qquad \text{Small } f(b \to B_c^+) \text{ cancels out mostly with } |V_{cb}/V_{ub}|^2$

Measurements of $B^+ \rightarrow \tau^+ \nu$ at B factories Consistent with SM within 2σ : $(0.75 \pm 0.10) \times 10^{-4}$

 $B^+ \rightarrow \tau^+ \nu$ search at Z pole by L3 with 1.475M hadronic Z decays 5.7×10⁻⁴ @90% UL

L3 Collaboration, PLB 396 (1997) 327

Fig. 6. Lepton energy spectrum for the selected $B^- \rightarrow \tau^- \tilde{\nu}_{\tau}$, $\tau^- \rightarrow l^- \bar{\nu}_l \nu_\tau$ candidates. The hatched histogram represents the background, the open histogram shows the signal contribution assuming $\mathcal{B}(\mathbf{B}^- \rightarrow \tau^- \bar{\nu}_\tau) = 10^{-3}$.

Prospect at CEPC

CEPC is (almost exclusively) the ideal factory for $B_c^+ \rightarrow \tau^+ \nu$

- ✓ Belle II: clean, but no heavy b-hadrons (B_s , B_c or b-baryon)
- ✓ LHCb: energetic and rich in all heavy b-hadrons, but hard for final states with missing energy or photons

Prospect at CEPC ($10^{11} Z$ bosons):

- $\checkmark \sim 1 \text{M } B^+_{(c)} \rightarrow \tau^+ \nu$ will be generated
- ✓ With $\varepsilon_{B_c^+ \to \tau^+ \nu} = 0.01$, a statistic error at 1% level is expected

Data sample

✓ Signal MC (Pythia 8)

 $16 \text{k} Z \rightarrow b \overline{b}, B_c^+ \rightarrow \tau \nu, \tau \rightarrow e + 2 \nu$

1/10 of the expected sample in 10^{11} Z bosons

We start with one-prong of e in the τ decay, but later will extend to $\tau \rightarrow \mu/\pi/3\pi + n\nu$

✓ Background MC (whizard):

10M $Z \rightarrow b\bar{b} / c\bar{c} / u\bar{u} / d\bar{d} / s\bar{s}$, respectively 1/1000 of the expected sample in 10¹¹ Z bosons

Analysis strategy

1. Define thrust axis n using all the charged and neutral particles, when T is maximized:

$$T = \max_{\substack{|n|=1}} \frac{\sum_{i} |p_{i} \cdot n|}{\sum_{i} |p_{i}|}$$
 T=0: two back-to-back pencil jets;
T=1/2: spherically symmetric

- 2. Divide the final state into signal and recoiling hemispheres along the thrust axis: In the signal side:
 - Much smaller total energy due to the missing $\nu's$
 - Low multiplicity
 - In the recoiling side
 - Tagged as b-jet

characteristic event topology: 1 b-jet in one hemisphere + 1 prong (e) in the other

Analysis strategy

3. In the cone ($\Delta \theta < 0.5$ rad) around the thrust axis:

- One energetic charged track with displaced vertex (characteristic IP)
- Other tracks are soft and come from PV
- Little neutral energy

Impact Parameter (IP) is d0 (clsoest distance to IP)

Its sign is determined by the intercept of the track with the B_c^+ flight path

b-jet tagging

Cluster the events into two jets

The leading jet is well identified as b-jet:

Energy imbalance btw two hemispheres

 $\boldsymbol{\Gamma}$

 $E_{recoil (sig)}$: the total energy projected along the thrust in the recoiling (signal) side

Large energy imbalance is expected in signal MC due to the missing $\nu's$

$$E_{recoil} - E_{sig} > 5 \text{ GeV}$$

$$= B_{C}^{+} \rightarrow \tau^{+} \nu$$

$$= Z \rightarrow b\overline{b}$$

$$= Z \rightarrow c\overline{c}$$

$$= Z \rightarrow u, d, s$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

 Γ

Pre-selection determination

Neutral clusters in the B_c^+ cone

 B_c^+ cone definition: $\Delta \theta < 0.5$ around the thrust

 $E_{Cl,\Delta\theta < 0.5}$: total energy of neutral particles in the B_c^+ cone

Little neutral energy deposit is expected in the B_c^+ cone

Performance after pre-selection

Charged tracks in the B_c^+ cone

 N_{trk} : number of charged tracks (E>2 GeV) within the cone

Tracks from the other c-quark may also fall in the cone

Pre-cuts applied!

Performance after pre-selection

Signal and fragmentation tracks in the B_c^+ cone

Electron identification

E/p gives good discriminant power between the signal electron and fragmentation tracks Tentative signal electron identification: E/p>0.8, p>2GeV

Similar analysis

Similar analysis

EW box decays with 2 neutrinos have a similar signiture as $B_c^+ \rightarrow \tau \nu$: clean charged track(s) plus large missing energy, e.g.:

 $B_s \to \phi \nu \nu, \Lambda_b \to \Lambda \nu \nu$ (unique at Z pole) $B^0 \to K_s \nu \nu, B^+ \to K^+ \nu \nu$ (even better precision than BelleII)

FIG. 1: Lowest-order SM Feynman diagrams for $b \rightarrow s\nu\overline{\nu}$ transitions. The virtual top quark provides the dominant contribution in each case.

Wide variety of NP scenarios can modify the expected branching fractions and q2 (lepton pair mass) distribution:

- ✓ Particles contributing to additional loop diagrams (non-standard Z couplings with SUSY particles, 4th generation quarks, anomalous top-charm transitions, or a massive U(1) gauge boson Z)
- ✓ New particles forming the missing four momentum, such as low-mass dark-matter candidates, unparticles, right-handed neutrinos, or SUSY particles
- ✓ Models with universal extra dimension also predict higher BR

Summary & Outlook

Summary:

- ✓ $B_c \rightarrow \tau \nu$ search is of great interest and can even be exclusively studied best at CEPC
- ✓ Based on MC simulation, analysis methodology is investigated for electron channel
- \checkmark b-hadron with similar final-state topology could also be promising

Outlook:

- $\checkmark\,$ Explore more selection to suppress the backgrounds
- $\checkmark\,$ To discriminate signal from fragmentation tracks on the signal side
- ✓ Disentange $B_c^+ \to \tau \nu$ and $B^+ \to \tau \nu$ and measure the BFs simultaneously. BF($B^+ \to \tau \nu$) can be used to measure V_{ub} with f_{B^+} taken from LQCD calculation How? Tag cham-hadron, Impact parameter distribution, energy of the signal track ...
- ✓ $f(b \to B_c^+)$ will be the largest uncertainty in Br $(B_c^+ \to \tau \nu)$ measurement One probable solution: drop out $f(b \to B_c)$ by measuring $\frac{\text{Br}(B_c \to \tau \nu)}{\text{Br}(B_c \to J/\psi l \nu)}$

Backup

$#B_c \rightarrow \tau v vs #B_{II} \rightarrow \tau v at the Z pole$ $\frac{N_{B_c}}{N_{B_u}} = \frac{f(b \to B_c)}{f(b \to B_u)} \left| \frac{V_{cb}}{V_{ub}} \right|^2 \left(\frac{f_{B_c}}{f_{B_u}} \right)^2 \frac{m_{B_c}}{m_{B_u}} \frac{\tau_{B_c}}{\tau_{B_u}} \frac{(1 - \frac{m_\tau}{m_{B_c}})^2}{(1 - \frac{m_\tau}{m_{B_c}})^2} \sim O(1)$ • $\frac{T_{B_c}}{T_{T_c}} \simeq 0.31$ (±2%)

- $\frac{m_{B_c}}{m_{B_u}} \frac{(1 \frac{m_{\tilde{\tau}}}{m_{B_c}^2})^2}{(1 \frac{m_{\tilde{\tau}}^2}{m^2})^2} \simeq 1.3$ (<< ±0.1%)
- $\left(\frac{f_{B_c}}{f_{P_c}}\right)^2 \simeq 6.2$

(±10%; ±3.5% each
$$f_{Bc}$$
 and f_{Bu} each, correlated?

- $\left|\frac{V_{cb}}{V_{cb}}\right|^2 \sim 120$

 $(\pm 20\%; \pm 9\% V_{ub}, \pm 2\% V_{cb}, BELLEII expects to$ measure V_{ub} with 1% precision) • $\frac{f(b \to B_c)}{f(b \to B_c)} \sim O(1/400)$ (0.02% - 0.1% f(b \to B_c), ±5.8% f(b \to B_u))

Performance after pre-selection

Signal and fragmentation tracks in the B_c^+ cone

