Coherent beam-beam instability in SuperKEKB and CEPC

K. Ohmi, CEPC workshop IHEP, Nov 12-14, 2018

Coherent beam-beam instability in collision with a large crossing angle

- Beam-beam instability in coupled horizontal headtail mode is induced in collision with a large crossing angle.
- This instability is serious for future colliders based on crab waist scheme.

Coherent beam-beam instability in head-tail mode for collision with a large crossing angle

Mechanism of the instability- Cross wake force

$$\Delta p_x(z) = -\int_z^\infty W(z-z')\rho_x(z')dz'$$

• Cross wake field gives correlation of two colliding beam by convolution of each dipole moment.

$$\Delta p_{x,\mp}(z_{\mp}) = -\int_{-\infty}^{\infty} W_x^{(\mp)}(z_{\mp} - z'_{\pm}) \rho_x^{(\pm)}(z'_{\pm}) dz'_{\pm}$$

• Cross wake force induced by the beam-beam interaction is localized at IP.

CEPC Parameters Y. Zhang, CEPC conference Nov. 2017, IHEP

	Higgs	W	Z		
Number of IPs	2				
Energy (GeV)	120	80	45.5		
Circumference (km)		100			
SR loss/turn (GeV)	1.68	0.33	0.035		
Half crossing angle (mrad)		16.5			
Piwinski angle	2.75	4.39	10.8		
N_e /bunch (10 ¹⁰)	12.9	3.6	1.6		
Bunch number	286	5220	10900		
Beam current (mA)	17.7	90.3	83.8		
SR power /beam (MW)	30	30	2.9		
Bending radius (km)	10.9				
Momentum compaction (10 ⁻⁵)		1.14			
$\beta_{IP} x/y (m)$		0.36/0.002			
Emittance x/y (nm)	1.21/0.0036	0.54/0.0018	0.17/0.0029		
Transverse σ_{IP} (um)	20.9/0.086	13.9/0.060	7.91/0.076		
$\xi_{\chi}/\xi_{\gamma}/\text{IP}$	0.024/0.094	0.009/0.055	0.005/0.0165		
RF Phase (degree)	128	134.4	138.6		
$V_{RF}(\text{GV})$	2.14	0.465	0.053		
f_{RF} (MHz) (harmonic)	650				
Nature bunch length σ_z (mm)	2.72	2.98	3.67		
Bunch length σ_z (mm)	3.48	3.7	5.18		
HOM power/cavity (kw)	0.46 (2cell)	0.32(2cell)	0.11(2cell)		
Energy spread (%)	0.098	0.066	0.037		
Energy acceptance by RF (%)	2.06	1.48	0.75		
Photon number due to beamstrahlung	0.25	0.11	0.08		
<i>F</i> (hour glass)	0.93	0.96	0.986		
L_{max} /IP (10 ³⁴ cm ⁻² s ⁻¹)	2.0	4.1	1.0		

FCCee parameters

D. Shatilov, Aug-Oct 2017

parameter	Z	W	H (ZH)	ttbar	ttbar
beam energy [GeV]	45.6	80	120	175	182.5
arc cell optics	60/60	90/90	90/90	90/90	90/90
momentum compaction [10-5]	1.48	0.73	0.73	0.73	0.73
horizontal emittance [nm]	0.27	0.28	0.63	1.34	1.45
vertical emittance [pm]	1.0	1.0	1.3	2.7	2.9
horizontal beta* [m]	0.15	0.2	0.3	1	1
vertical beta* [mm]	0.8	1	1	2	2
length of interaction area [mm]	0.42	0.5	0.9	1.95	2.0
tunes, half-ring (x, y, s)	(0.569, 0.61, 0.0125)	(0.577, 0.61, 0.0115)	(0.565, 0.60, 0.0180)	(0.553, 0.59, 0.0343)	(0.553, 0.59, 0.0349)
longitudinal damping time [ms]	414	77	23	7.5	6.6
SR energy loss / turn [GeV]	0.036	0.34	1.72	7.8	9.21
total RF voltage [GV]	0.10	0.44	2.0	9.5	10.9
RF acceptance [%]	1.9	1.9	2.3	5.0	4.7
energy acceptance [%]	1.3	1.3	1.5	2.5	2.5
energy spread (SR / BS) [%]	0.038 / 0.132	0.066 / 0.153	0.099 / 0.151	0.147 / 0.192	0.153 / 0.195
bunch length (SR / BS) [mm]	3.5 / 12.1	3.3 / 7.65	3.15 / 4.9	2.45 / 3.25	2.5 / 3.3
Piwinski angle (SR / BS)	8.2 / 28.5	6.6 / 15.3	3.4 / 5.3	1.0 / 1.33	1.0 / 1.3
bunch intensity [10 ¹¹]	1.7	1.5	1.5	2.7	2.8
number of bunches / beam	16640	2000	393	48	39
beam current [mA]	1390	147	29	6.4	5.4
luminosity [10 ³⁴ cm ⁻² s ⁻¹]	230	32	7.8	1.8	1.5
beam-beam parameter (x / y)	0.004 / 0.133	0.0065 / 0.118	0.016 / 0.108	0.095 / 0.157	0.090 / 0.148
luminosity lifetime [min]	70	50	42	39	39
time between injections [sec]	122	44	31	32	32
allowable asymmetry [%]	±5	±3	±3	±3	±3
required lifetime by BS [min]	29	16	11	12	12
actual lifetime (w) by BS [min]	> 200	20	20	24	25

3D beam-beam effect D. Shatilov

- Combined effect of the coherent beam-beam headtail instability and Beamstrahlung
- Scenario
 - 1. Horizontal size increases due to the beam-beam instability.
 - 2. Vertical size increases due to hourglass effect enhanced by horizontal size increase.
 - 3. When vertical size of one beam is larger, beamstrahlung is enhanced, then bunch length increases.
- Very sensitive for current balance of e+e-.
- Parameters should be chosen so as to avoid the beam-beam instability under condition without beamstrahlung.

Collision with slightly asymmetric beam currents

- Equilibrium state exists when beam current balance is within 95%.
- The balance condition should be kept on the beam injection.

Simulation result (bbss)

Stability for injected beam

	Injected Beam	Stored Beam			
Circumference[km]	50				
Bunch Population	$15 imes 10^{10}$				
Half Crossing Angle[mrad]	16.5				
Crab Waist Strength	100%				
€ _x [nmrad]	3.57	1.21			
ϵ_{y} [pmrad]	17.8	3.1			
σ _z [mm]	2.8	3.26			
$\sigma_{\delta}[10^{-4}]$	9.4	9.94			
$v_x/v_y/v_s$	0.555/0.61/0.035				
$eta_x^*/eta_y^*[m]$	0.36/0.0015				
Damping Decrement[x/y/z]	0.0035/0.0035/0.007				

SuperKEKB as test machine for future colliders

- The design parameters of CEPC and FCC-ee are being almost converged.
- SuperKEKB
 - Is there any problem for collision with a large Piwinski angle?
 - Tolerance for optics aberration at IP is severe as β^{\ast} is squeezed.

The instability is really observed and how serious?

Coherent beam-beam Instability seen in strong-strong simulation (SuperKEKB)

- Design parameters of SuperKEKB was stable.
- We squeeze β^* step-by-step.
- Instability was seen in detuned β^* (8x,8x).
- We plan to study this instability in Phase II commissioning this year.
- This instability is serious for FCC-ee design.

Eigen mode analysis for v_x =0.53 v_s (LER)=0.0247, v_s (HER)=0.0280

Low threshold with coupling $v_x + v_s^{(+)}$ and $vx - 3v_s^{(-)}$. For different vs, appearance of instability is complex.

Strong-strong beam-beam simulation 8x8x, 1.44mAx1.04mA, v_x =0.53

Summary of the strong-strong simulation

v_x	8x8x			4x8x				
	L/L _o ,	σ_x/σ_{x0} (L & H)	OSC.	L/L ₀ ,	σ_x/σ_{x0}	(L & H)	OSC.
0.53 a	0.58-0.66	6.5	4.5		0.75-1.0	3.0-7.5	2.2-6.2	
0.535 g	0.70-0.95	2.5-6.2	1.4-4.0		1.04	1.2	1.0	
0.54 d	0.75-0.95	2.5-6.0	1.4-4.0		1.05	2.1	1.1	
0.545 f	0.83	7.2	1.2	no osc.	0.94	5.2	1.7	
0.55 e					0.75-0.77	8.6	3.5	

Horizontal emittance growth does not contribute luminosity drop in collision with a large crossing angle, when β_y is large. Crab waist on in the simulation. CW-off may be serious for the horizontal emittance growth.

Instability study in Phase II

- Typical condition
- $\beta_x = 0.2m, 0.1m, \beta_y = 3mm$
- I_{tot}=270mA (e+)x 225mA (e-), Nb=395,
- I_b=0.68mAx0.57mA (design 1.44mAx1.04mA)
- Np=4.3x10¹⁰, 3.6x10¹⁰. (design 9.04x10¹⁰x 6.53x10¹⁰)
- v_s (e+)=0.022, v_s (e-)=0.026

7/7 day time study

- 270mAx225mA, 10:50-12:30
- Search tune condition in which the instability appears.

$\sigma_{\!_X}\left(\nu_{\!_X}\!(e^{\scriptscriptstyle +})\!,\,\nu_{\!_X}\!(e^{\scriptscriptstyle -})\right)$ at 270mAx225mA

- I₊I₋=0.39 mA², N_b=395
- We did not cross over the peak to avoid a beam abort.

- The same tune condition in Red(e+) & blue(e-)
- Magenta(e+) & cyan(e-)

$\sigma_x (v_x(e^+), v_x(e^-))$ at 220mAx180mA

• I₊I₋=0.25 mA², N_b=395

$\sigma_{\!_X}\left(\nu_{\!_X}\!(e^{\scriptscriptstyle +}),\,\nu_{\!_X}\!(e^{\scriptscriptstyle -})\right)$ at 200mAx160mA

- I₊I₋=0.21 mA², N_b=395
- Beam size blow-up somewhat weak. The resonance line was crossed over.

- Peak tune does not depend on bunch current.
- Stop-band may depend on?
- More study is necessary.

Threshold of the instability

- 170mAx142mA, No σ_x blowup
- 200mAx160mA, blowup is seen.
- No blow-up in single beam tune scan.

Machine experiment at July 13, 2018

- 16:50 (instability start) & 16:57 (peak), data taking using streak camera x-z and BOR.
- v_s (e+)=0.022, v_s (e-)=0.026

Bunch Oscillation Recorder (LER)

- Clear oscillation was seen in a data, which taken at strongest beam size blow-up.
- Background level of HER data was high, noisy.

Horizontal beam size by streak camera

- No clear difference between stable and unstable
- Perhaps, lack of resolution.

Shot by shot

average

Possible instability condition

- $v_x(e+)=0.552$, $v_x(e-)=0.5435$, $v_s(e+)=0.022$, $v_s(e-)=0.026$
- v_x(signal)=0.563
- $v_x(e_-) + v_s(e_-) = 0.5695$, $v_x(e_+) 5v_s(e_+) = 1-0.558$ 300mAx250mA: $\xi_x(e_+) = 0.0073$, $\xi_x(e_-) = 0.0025$ Possible candidate: 0.563=(0.5695+0.558)/2
- $v_x(e_{-}) v_s(e_{-}) = 0.5175$, $v_x(e_{+}) 3v_s(e_{+}) = 1-0.514$ • $v_x(e_{-}) + v_s(e_{-}) = 0.5695$, $v_x(e_{+}) + v_s(e_{+}) = 0.574$
- v_x(e-)+v_s (e+)=0.5655,

but no synchro-beta coupling mode.

• v_x(e+)+v_s (e-)=0.578

Simulation in the experimental condition

- FFT peak 0.558(simulation), not 0.564 (measured).
- $v_x(e+)=0.552$, $v_s(e+)=0.0213$, $v_x(e-)=0.5435$, $v_s(e-)=0.026$

Summary

- Coherent beam-beam instability in head-tail mode has been predicted in strong-strong beam-beam simulation.
- Understanding this instability is very important for future colliders (CEPC/FCCee) based on crab waist scheme.
- The instability was observed in SuperKEKB commissioning as is predicted.
- Horizontal beam size blow-up has been observed depending on horizontal tunes of two beams.
- Bunch oscillation was detected, but streak camera did not show the signals of instability.
- Simulation in the experimental condition shows reasonable agreement. Probably mode coupling between +1(e⁻) and -5(e⁺) modes.
- More systematic tune scan, identify peak position.

Instability and Tune

- 7/6 0:00-0:40
- 7/2 stable HER 45.5464 43.6109 LER 44.5594 46.6187 0.556 0.618

unstable 0.5431 0.607

• 6/24 No instability HER .5437 0.607 LER 0.5585 0.6143