

Higgs Decays to Long-Lived Particles at the Circular Electron Positron Collider

Seth Koren UC Santa Barbara



Work in progress with N. Craig and S. Alipour-Fard

## Higgs







# $\mathcal{L} \supset |H|^2 \mathcal{O}_{\text{Dark}}$

Higgs



 $\mathcal{L} \supset |H|^2 \mathcal{O}_{\text{Dark}}$ 

95% C.L. Upper limit on Higgs Exo. Br(10-4)



All over the SM!



#### Exotic Higgs Decays Signal Model



Generally, a Higgs portal `Hidden Valley' scenario (Strassler, Zurek '06)



(Strassler '08)

E.g. Fraternal Twin Higgs with  $X = 0^{++}$  glueball (Craig, Katz, Strassler, Sundrum '15)

For faithful forecasting we have to account for backgrounds and efficiency!



`Prompt'/Standard cuts

- Lepton invariant mass
- Recoil mass

But displaced vertices are exotic, striking signatures of new physics! Utilize them! Strategies:

- Displaced dijet invariant mass
- Locate displaced secondary vertices
- Remove SM long-lived hadron background

### Displaced Jets!?

Standard jet algorithms in Delphes perform badly on displaced jets



This poses a challenge for faithful simulation and forecasting

Future: Particle-flow algorithm? Providing guidance to Delphes? Machine learning?!

For now: Avoid dealing directly with jets and make use of secondary vertex identification.

### Secondary Vertex Identification

Perform depth-first `clustering' of particles to form candidate vertices



Secondary vertex then identified as displaced cluster (> 10  $\mu m$ ) closest to beamline

#### **Dijet** Cluster Invariant Mass

Can't faithfully construct jet objects, so instead make use of our clustering algorithm



Apply `smearing' to account for dijet resolution, then require  $m_{cluster} \leq m_h/2$ 

#### Removing Long-Lived Hadrons

Cut on `pointer tracks' from PV to cluster



For long-lived neutral hadrons use invariant mass of charged tracks in cluster

Require

 $\left(\sum_{i \in \text{Cluster}} p_i\right)^2 \ge 6 \text{ GeV}$ 

## Preliminary Results

|                   |                                 | Acceptance x Efficiency          |               | $M_X = 50 \text{ GeV}$ |                      |
|-------------------|---------------------------------|----------------------------------|---------------|------------------------|----------------------|
|                   | $ZH \rightarrow (\ell\ell)(jj)$ | $ZZ  ightarrow (\ell \ell)(j j)$ | c	au = 10  mm | $c	au = 10 	ext{ cm}$  | $c	au = 10 	ext{ m}$ |
|                   |                                 |                                  |               |                        |                      |
| $M_{\ell\ell}$    | 0.968                           | 0.997                            | 0.961         | 0.964                  | 0.960                |
| $m_{ m recoil}$   | 0.942                           | 0.001                            | 0.951         | 0.954                  | 0.951                |
| Displaced Cluster | 0.942                           | 0.001                            | 0.951         | 0.954                  | 0.201                |
| Charged Invt Mass | 0.001                           | 0                                | 0.939         | 0.940                  | 0.180                |
| `Dijet' Invt Mass | 0.001                           | 0                                | 0.910         | 0.911                  | 0.162                |
| Pointer Track     | 0                               | 0                                | 0.907         | 0.911                  | 0.160                |

#### Comparison with LHC



LHC produces more total Higgses, but CEPC has better impact parameter resolution, better vertex reconstruction, and cleaner environment.

### Conclusions

- Exotic Higgs Decays to LLPs are a well-motivated place to look for new physics and probe Higgs properties
- Forecasting sensitivity with displaced vertices is difficult, and requires further concerted effort from the community
- Now is the time for this work so we can inform detector design
- CEPC can improve on the LHC in searching for such rare decays