Process of ATLAS Inner Tracker Strip Module Production

Yuzhen Yang, on behalf of ATLAS collaboration Institute of High Energy Physics, CAS, Beijing, China 100049

Introduction

ATLAS Upgrade Background

- High Luminosity-LHC (HL-LHC) is foreseen to be completed in 2026. • Aim to increase the integrated luminosity to about ten times the original LHC design. • improve the precision of the Higgs measurement, better sensitivity to new physics
- Radiation damage
- Current strip tracker is designed up to 2*10¹⁴ Neq/cm² • HL-LHC requirement is up to 2*10¹⁵ Neq/cm²
- Detector occupancy
- Current tracker is designed to accommodate $\langle \mu \rangle \sim 23$ \circ increased granularity is required for HL-LHC (μ) ~ 200

Wire bonding

- 25um aluminum wire \bullet
- 4-row front-end bonded to sensor to readout \bullet
 - Long strip: 1280 channels
 - Short strip: 2560 channels
- bond pad size of ABC130: 60um*200um

ATLAS Inner Tracker (ITk)

• New all-silicon Inner Tracker (ITK) will replace current ATLAS inner detector (ID) • Technical Design Report for ITK strip detector approved by LHCC (CERN-LHCC-2017-005)

ITk Strip tracker layout

- Strip Track coverage up to $|\eta| = 2.9$
- 4 strip layers in Barrel (two inner short strip layer, two outer long strip layers)
- 6 endcap strip disks

design and setup 2*2 jig to improve production efficiency

- optimize the parameters for wire bonding: test wire pull \bullet strength and bond width
 - bond force
 - deformation
 - ultrasonic power

- Encapsulation for quality assurance (R&D with Oxford) \bullet
 - Fully encapsulate ASIC back-end wires (ASIC to hybrid) \bullet
 - More tests on going check the performance before and after \bullet

Glue dispenser to perform the encapsulation R & D

Photo of wire bond encapsulation (Sylgard 186 Silicone Elastomer)

Strip Module Assembly

- Basic Strip Module Unit
- low-mass Kapton hybrid with ABCStar (ATLAS Binary Chip) and HCCStar (Hybrid Controller Chip) ASICs
- Power-Board including DC-DC Low Voltage (LV) Power lacksquareBlock, monitoring ASIC, and HV multiplexer

Electrical test

- ITSDAQ: the software used in the development of the ATLAS ITk \bullet strip detector read-out. DAQLoad +ABC130
- Software Configuration:
- Initial, Hybrid/Module, Chip
- Calibration Tests Essentials: \bullet
 - Strobe Delay
 - Trim Range
 - 3-point gain and response curv
 - Noise Occupancy

IHEP/THU process

- IHEP cooperate with RAL closely
 - Undertake 50% of 1k barrel strip modules in China
 - **IHEP** person working in RAL
 - Invite RAL staff to visit IHEP

Assembly process

- Cleanroom built in IHEP (with THU) lacksquare
 - Structure of cleanroom is almost ready
 - Wire bonder (BondJet820)
 - Smart scope
 - Probe station

BondJet820 Smart scope Probe station

The 2018 International Workshop on the High Energy Circular Electron Positron Collider, Beijing, 12-14 Nov 2018