

Precision Measurement of Higgs $\rightarrow \gamma \gamma$ decay channel in CEPC

Introduction	$ZH(Z \rightarrow l\bar{l})$ sub-channel
 Higgs→ γγ decay Low branching ratio 0.23% Complex background components and large cross section Very clean final state topology. Precise photon identification and measurement. 	$Z \to e^+e^-$ decay is not considered because the large background from the Bhabha process. $Z \to \mu^+\mu^-$ and $Z \to \tau^+\tau^- \to \mu^+\mu^-\nu\bar{\nu}$ decay channels are considered together, and other τ decay channels are abandoned due to the difficulty in τ reconstruction
	Event selection

ATLAS Collaboration[1]

CMS Collaboration[2]

Present precision from LHC

$$\begin{split} \mu_{global} &= 0.99^{+0.15}_{-0.14} (\mathcal{L} = 36.1 f b^{-1}) \\ \mu_{global} &= 1.18^{+0.17}_{-0.14} (\mathcal{L} = 35.9 f b^{-1}) \end{split}$$

CEPC project

Operation mode

- Higgs factory $\sqrt{s} = 240 GeV$, in which $\sigma_{ee \rightarrow ZH} = 203.66 \ fb$
- Integrated luminosity 5.6 ab^{-1}

Detector performance

- Track momentum resolution $\Delta(1/p_T) \sim 2 \times 10^{-5} \ GeV^{-1}$
- ECAL energy resolution $\Delta E / E \sim \frac{16\%}{\sqrt{E/GeV}} \oplus 1\%$

Present MC generation and simulation

- $\mu\mu\gamma\gamma$ final state
- $E_{\gamma} > 35 GeV$, $p_{T\gamma} > 30 GeV / 10 GeV$
- $|\cos\theta_{\gamma}| < 0.9$
- $M_{\gamma\gamma} \in [110, 140] GeV, M_{\gamma\gamma}^{recoil} \in [84, 103] GeV$

• $\min|cos\theta_{\gamma l}| < 0.9$

$ZH(Z \rightarrow \nu \overline{\nu})$ sub-channel

MC templates

- Signal: $e^+e^- \rightarrow ZH \rightarrow \nu \bar{\nu} \gamma \gamma$
- Background: $e^+e^- \rightarrow \gamma\gamma + invisiable$

Event selection

- Inclusive two photon
- $E_{\gamma} > 30 GeV$, $p_{T\gamma} > 20 GeV$
- $|\cos\theta_{\gamma}| < 0.8$

- Generator: WHIZARD 1.95+MokkaC
- Simulation: a dedicated fast simulation, with parametrized detector response.

$ZH(Z \rightarrow q\overline{q})$ sub-channel

MC templates

- Signal: $e^+e^- \rightarrow ZH \rightarrow q\bar{q}\gamma\gamma$
- Background: $e^+e^- \rightarrow q \bar{q} \gamma \gamma$

Event selection

- 2 high energy photon with $E_{\gamma} > 35 GeV$, $p_T > 30/20 GeV$ (leading/sub-leading photon)
- Cosine polar angle between di-photon/di-jet $cos\theta_{\gamma\gamma} > -0.95, cos\theta_{jj} > -0.95$
- Minimum cosine polar angel between photon and jet $\min |cos\theta_{\gamma j}| < 0.9$

• $M_{\gamma\gamma} \in [110, 140] GeV$, $E_{\gamma\gamma} \in [120, 150] GeV$

Figure 1. di-photon invariant mass distributions in 3 sub-channel

Results

The combination of three sub-channel provides a final result of $\sigma(ZH) \times BR(H \rightarrow \gamma\gamma)$ measurement precision

Sub-channel	<i>qq</i> γγ	lĪγγ	ννγγ	combined
precision	9.84%	23.7%	10.5%	6.84%

• Di-photon mass window [110, 140] *GeV*

Fit model

- Signal: Double-side Crystal Ball
- Background: 2nd polynomial exponential PDF
- Combined fit on signal and background to extract the signal strength

Conclusions

- A relative precision of 6.84% on $\sigma(ZH) \times BR(H \rightarrow \gamma\gamma)$ can be achieved in CEPC with $\sqrt{s} = 240$ GeV and full running time.
- This result can be improved by optimizing the event selection criteria and further categorization.

References

- 1. ATLAS Collaboration, Measurements of Higgs boson properties in the di-photon decay channel with 36 fb-1 of pp collision data at $\sqrt{s} = 13$ TeV with the ATLAS detector, (2018), arXiv: 1802.04146 [hep-ex]
- 2. CMS Collaboration, Measurements of Higgs boson properties in the di-photon decay channel in proton-proton collisions at $\sqrt{s} = 13$ TeV, (2018), arXiv: 1804.02716 [hep-ex].