ATLAS Strip Tracker

中國科学院為能物路施施 Institute of High Energy Physics Chinese Academy of Sciences

Xin Shi

On behalf of ATLAS Collaboration

2018.11.13

The 2018 International Workshop on the High Energy Circular Electron Positron Collider

Outline

- Overview
 - ATLAS Upgrade for HL-LHC
 - The Inner Tracker (ITk)
 - ITk Layout
- ITk Strips
 - Sensors
 - Modules
 - Local Supports
 - Global Mechanics

ATLAS Upgrade for HL-LHC

- High Luminosity-LHC (HL-LHC) is foreseen in 2026
- Instantaneous luminosity up to 7.5×10^{34} cm⁻²s⁻¹
- Delivering an integrated luminosity of 4000 fb⁻¹
- Up to 200 collision per bunch crossing
- High particle fluences: radiation hardness of up to 1.3x10¹⁶ n_{eq}/cm² (Inner pixel layer)
- Low material budget

ATLAS Inner Tracker (ITk) upgrade

- The new inner tracker (ITk) will be an all Silicon tracker system
- 2T magnetic field, ~6m long, ~1m radius & up to $|\eta|=4$
- 5 Central and multiple Forward Pixel layers
- 4 Central and 6 Forward Strip layers
- Strip system consists of
 - ~18k Modules
 - ~60M channels
 - 165m² of Silicon
 - 50 institutes from 16 funding agencies (IHEP will contribute 1000 modules)

Strip detector comparisons	Current Inner strip tracker (SCT)	Future ITK strip tracker
Radial distance	300-560mm	400-1000mm
Channels	~8 millions	~100 millions
Modules	4 thousands	~20 thousands (165m ² silicon)

ITk Strips R&D

- Strips TDR was approved early 2017
- Strips have begun transition from R&D phase into production preparation. However lot of work still going on
 - Sensor Characterization
 - UV Curing of Glues
 - First Modules built with ABC130 ASICs
 - Irradiation & Testing of Components
 - Electrical & Thermo-mechanical Stave/Petal test

ITk Strip Sensors

- Silicon used by ITk strips are 320µm thick n-in-p float zone Si Sensors
- n-in-p sensors allow for
 - Improved tolerance against radiation damage (no p-bulk type conversion)
 - Collection of electrons (fast charge carriers)
 - Single sided processing (easier processing, handling and cost)
- The Central region (barrel) has 1 sensor shape with 75.4µm strip pitch, and with strip lengths of 23.9mm&47.75mm (short & long strips)
- The Forward regions (Endcap) has 5 sensor shapes with strip lengths from 8.1mm to 49.9 mm

Sensor Evaluation

- Community has tested several iterations of sensors
 - Barrel Long Strip & Short Strip
 - Endcap R0 (innermost sensor of the petal)
- Measured expected signal from Alibava system (Sr-90 source)
 - Consistent with previous measurements
 - Over a range of irradiation sources and fluencies

ITk Strip Modules

Silicon Modules consist of

- Binary readout chips (ABC) and hybrid controller chips (HCC)
 - Glued & wire bonded to a hybrid
 - Data transfer on hybrid at 32Mbit/s
- Hybrids are glued to the surface of the Si sensor
 - Wire bonds connect Front End ABC channels to Si strips
 - ~ 5200 wire bonds / module
- DC-DC powering allows powering of all modules
 - Unlike SCT each module cannot have own Voltage Cables

Modules – Electrical Tests

 Fully functioning electrical modules have been made by many of the assembly sites (for both Barrel and Endcap)

Test a binary readout using Threshold Scans

• Have a known input signal

9

Modules - Testbeam

- Conducted a series of successful testbeam campaigns since 2015
 - Both pre and post irradiated Modules
- Latest studies conducted on Endcap R0 Modules
 - Track reconstruction more complex due to Radial Strips
 - However efficiency ^{0.} measurements seen to match well to previously studied Barrel Modules

ITk Strip Electronics

ABCstar Front End Prototypes

- Important to demonstrate all components used are radiation hard to the expected end of life dose of the HL-LHC
- The new readout chip (ABCstar) FE prototype has been tested to examine any noise increase after irradiation
 - Reduction in noise of Front End prototype compared to current ABC130 chips
- Full ABCstar prototype in hand. Irradiation tests to confirm expected performance by Jan 2019

ITk Strip Local Supports

- There are 28 barrel modules on each stave (14 modules per side)
 - Modules on each side of the stave are rotated with respect to the beam line by 26 mrad
 - A total rotation of 52 mrad
- There are 18 endcap modules on each petal (9 modules per side, rings R0 - R5)
 - stereo angle of 20 mrad directly implemented in sensor geometry

ITk Strip Local Supports

- Staves (barrel) and Petals (endcap) provides mechanical, geometric, thermal and electrical support to modules:
 - Mechanical and Geometric: local supports interface to global support structures through a series of position locators and locking points
 - **Thermal**: titanium cooling tubes connected to CO2 cooling system working with temperatures between +20C and 40C
 - Electrical: electrical power (LV and HV), TTC (Timing, Trigger and and Control) data, DCS (Detector Control System) data and measured data transfer services required by the modules are carried by a copper/kapton bus tape mounted on both sides of structure and operated by EoS (End of Substructure) card

Local Supports – Prototype Staves

Electrical Stave tests

- Electrical Staves are being assembled at institutes in the UK (Rutherford Laboratories) and USA (Brookhaven National Labs)
 - BNL: 12 Electrical Short Strip modules
 - RAL: 2 real SS modules and 11 Electro-Mechanical SS modules (dummy sensor)
- In addition a 5 module 'Stavelet' was assembled and fully tested
 - Comparison made of 3 point gain measurements before and after mounting to the stavelet

Comparison of Noise Results

• On & Off Stavelet

Thermal performance well-understood

 Thermo-Mechanical (TM) Staves and Petals match Finite Element Analysis (FEA) prediction and infrared temperature measurements

ITk Strip Global Structures

- The Barrel is constructed from
 - 4 Layers
 (392 Staves in total)
 - Outer 2 Layers have Long Strip Modules
 - Inner 2 layers have Short Strip Modules

ITk Strip Global Structures

- The Barrel is constructed from
 - 4 Layers (392 Staves in total)
 - Outer 2 Layers have Long Strip Modules
 - Inner 2 layers have Short Strip Modules
- The Endcaps are constructed from
 - 32 petals per disk
 - 6 disks per Endcap

Transitioning to Production

- As well as finalization of the prototyping of components, ITk Strips is making the transition through to the production phase
 - Internal Technical Reviews (8 this year alone)
 - Organization of procurements
 - Understanding production rates and part flow
 - Preparing for site qualification (Late 2019)

Modelling the ramping of production rates for module building

Summary

- The HL-LHC will be a challenging but exciting new stage for the LHC
- The ITk is making the transition from R&D to a pre production phase
- Now beginning the process of getting ready for production!

Lessons for CEPC as large trackers

(Thanks Tony Affolder!)

- Take design risks only when you need them for performance. Not just to be innovative.
- Settle on base design concepts early. Stability allows for more thorough development.
- For "light" detectors, minimizing overall system power and using modern powering concepts is critical. Services needs to be considered early in the design process.