THE 2018 INTERNATIONAL WORKSHOP ON HIGH ENERGY CIRCULAR ELECTRON POSITRON COLLIDER

QCD AND EW CORRECTIONS IN LIGHT OF PRECISION MEASUREMENTS AT CEPC-SPPC

HUA-SHENG SHAO

12 NOVEMBER 2018

CEPC WORKSHOP 2018

INTRODUCTION

- Energy frontier in lab:
 - Direct and/or indirect to probe BSM and to improve our knowledge of SM
 - hadron-hadron colliders: LHC, SppC, FCC-hh
 - They are mainly QCD machines.
 - Require the good knowledge of PDF for hard probes.
 - The precision measurements are gained by large yields.
 - lepton-lepton colliders: CEPC, FCC-ee, ILC, CLIC
 - Importance of initial-state radiations and possible beamstrahlung.
 - Low background and large reconstruction efficiency.
 - lepton-hadron colliders: LHeC, FCC-eh, EIC
 - They are dedicated QCD machines.
 - Determine initial conditions for hadron-hadron colliders.

2

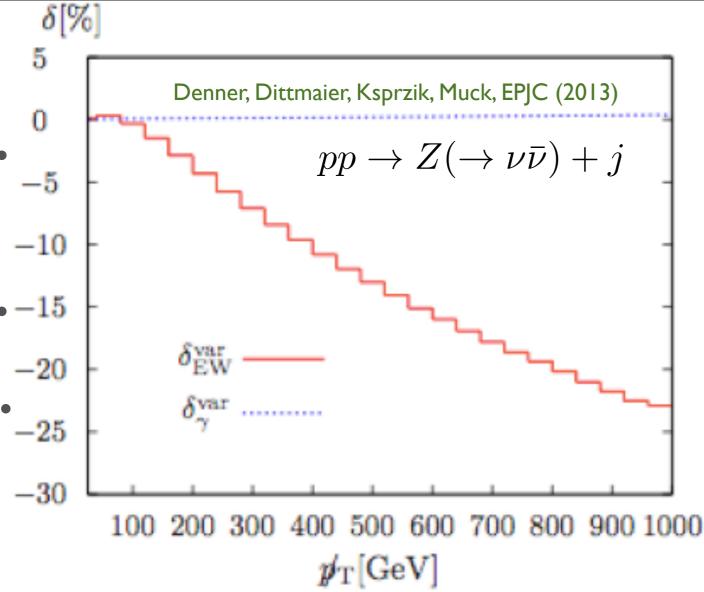
Monday, November 12, 18

Running

INTRODUCTION

- Energy frontier in lab:
 - Direct and/or indirect to probe BSM and to improve our knowledge of SM
 - hadron-hadron colliders: LHC, SppC, FCC-hh
 - They are mainly QCD machines.
 - Require the good knowledge of PDF for hard probes.
 - The precision measurements are gained by large yields.
 - lepton-lepton colliders: CEPC, FCC-ee, ILC, CLIC
 - Importance of initial-state radiations and possible beamstrahlung.
 - Low background and large reconstruction efficiency.
 - lepton-hadron colliders: LHeC, FCC-eh, EIC
 - They are dedicated QCD machines.
 - Determine initial conditions for hadron-hadron colliders.

Precision Theory Meets Precision Measurements


CEPC WORKSHOP 2018

Running

FRONTIER OF PRECISION THEORY

- LHC runs at 13 TeV and future colliders at 100 TeV
 - energy reaches deeper into multi-TeV region & high integrated luminosity
 - many processes (even rare processes before) reach precision era (precent)
- NLO QCD becomes standard: automation (e.g. MG5_aMC)
 - scale uncertainty reaches to 10% level
- Frontier of precision theory for ElectroWeak scale observables
 - Goal: to achieve the precent level predictions
 - Request: NNLO QCD and NLO EW $\alpha_s^2 \simeq \alpha \simeq 1\%$
 - Automation: NLO EW (done at fixed order) and NNLO QCD (long way)
- Necessity of NLO EW corrections:
 - First opportunity to explore TeV scale kinematics, where EWC ~ 10%
 - High precision measurements are present or in planned
 - cross section ratios, e.g. different center-of-mass energy, different processes
 - fundamental parameters, e.g. W mass
 - (differential) cross sections for candle processes, e.g. top quark pair xs, Z pt

ers at 100 TeV Jion & high integrated luminosity fore) reach precision era (precent) ation (e.g. MG5_aMC)

troWeak scale observables :ions $\alpha\simeq 1\%$

[•]) and NNLO QCD (long way)

- Necessity of NLU EVV corrections:
 - First opportunity to explore TeV scale kinematics, where EWC ~ 10%
 - High precision measurements are present or in planned
 - cross section ratios, e.g. different center-of-mass energy, different processes
 - fundamental parameters, e.g. W mass
 - (differential) cross sections for candle processes, e.g. top quark pair xs, Z pt

FRONTIER OF PRECISION THEORY

VBF total. Bolzoni, Maltoni, Moch. Zaro

ÿ

S

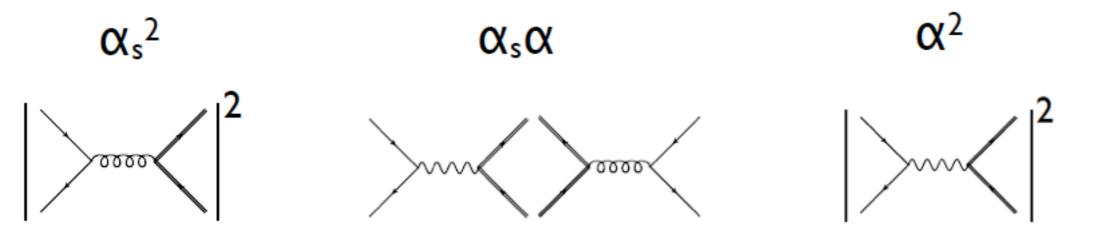
ent)

WH diff., Ferrera, Grazzini, Tramontano H total, Anastasiou, Melnikov y-y, Catani et al. H total, Ravindran, Smith, van Neerven Hj (partial), Boughezal et al. WH total, Brein, Djouadi, Harlander ttbar total, Czakon, Fiedler, Mitov H diff., Anastasiou, Melnikov, Petriello Z-y. Grazzini, Kallweit, Rathlev, Torre H diff., Anastasiou, Melnikov, Petriello W diff., Melnikov, Petriello ZZ, Cascioli it et al. W/Z diff., Melnikov, Petriello H diff., Catani, Grazzini WW, Gehrmann et al. W/Z dift. Catani et al Boughezal et al. Hj. Boughezal et al. VBF diff., Cacciari et al. explosion of calculations in past 24 months

2002 2004 2006 2008 2010 2012 2014 2016

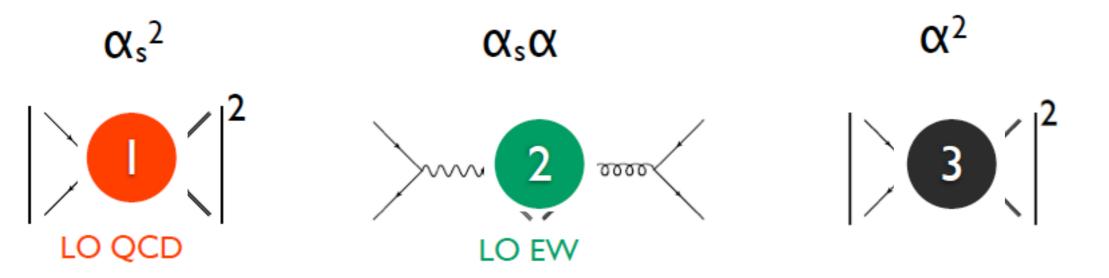
Figure by Gavin Salam

- Explosion of NNLO QCD calculations
 - Necessary to reduce QCD scale uncertainty

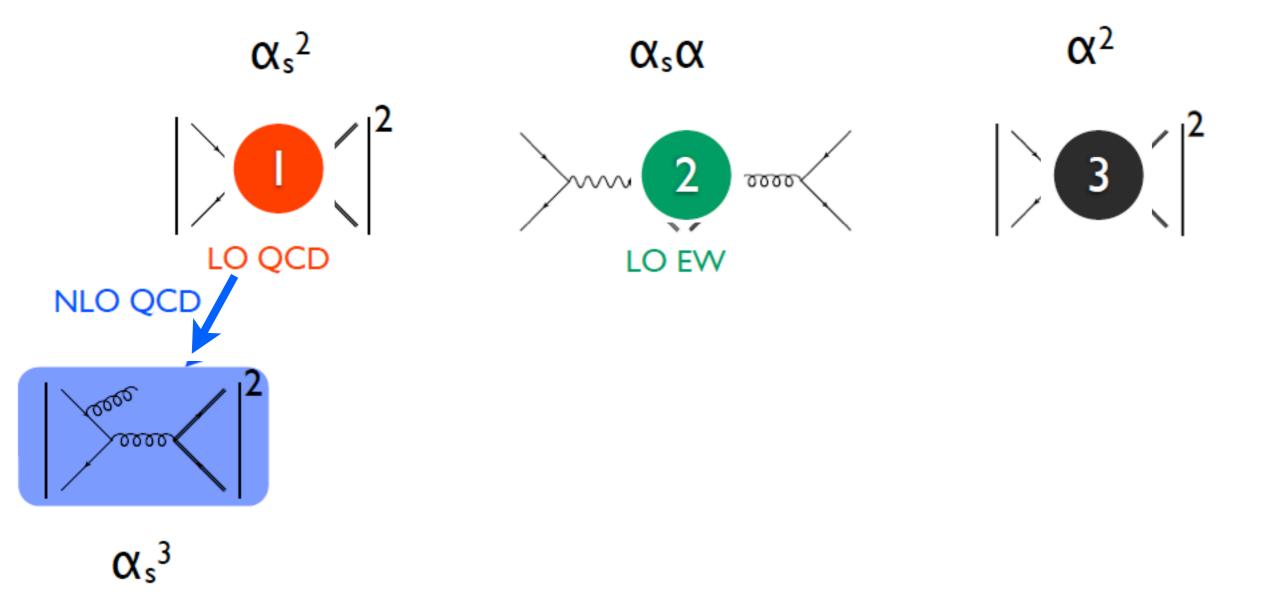

CEPC WORKSHOP 2018

W/Z total, H total, Harlander, Kilgore

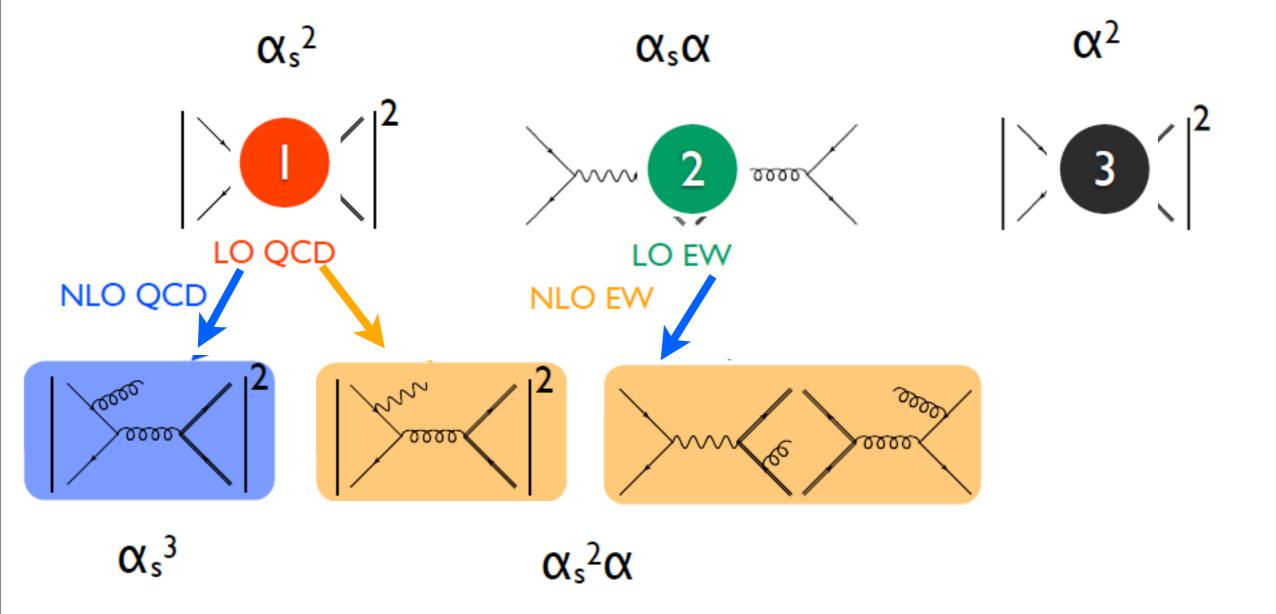
j (partial), Currie, Gehrmann-De Ridder, Glover, Pires ZH diff., Ferrera, Grazzini, Tramontano ttbar diff., Czakon, Fiedler, Mitov Z-y, W-y, Grazzini, Kallweit, Rathley Boughezal, Focke, Liu, Petriello Z], Gehrmann-De Ridder et al. ZZ, Grazzini, Kallweit, Rathlev Hj. Caola, Melnikov, Schulze Zj. Boughezal et al. WH diff., ZH diff., Campbell, Ellis, Williams y-y, Campbell, Ellis, Li, Williams WZ, Grazzini, Kallweit, Rathlev, Wiesemann WW. Grazzini et al. MCFM at NNLO, Boughezal et al. ptz, Gehrmann-De Ridder et al. single top, Berger, Gao, C.-Yuan, Zhu HH, de Florian et al. ptH, Chen et al. ptz, Gehrmann-De Ridder et al. jj, Currie, Glover, Pires yX, Campbell, Ellis, Williams Campbell, Ellis, Williams



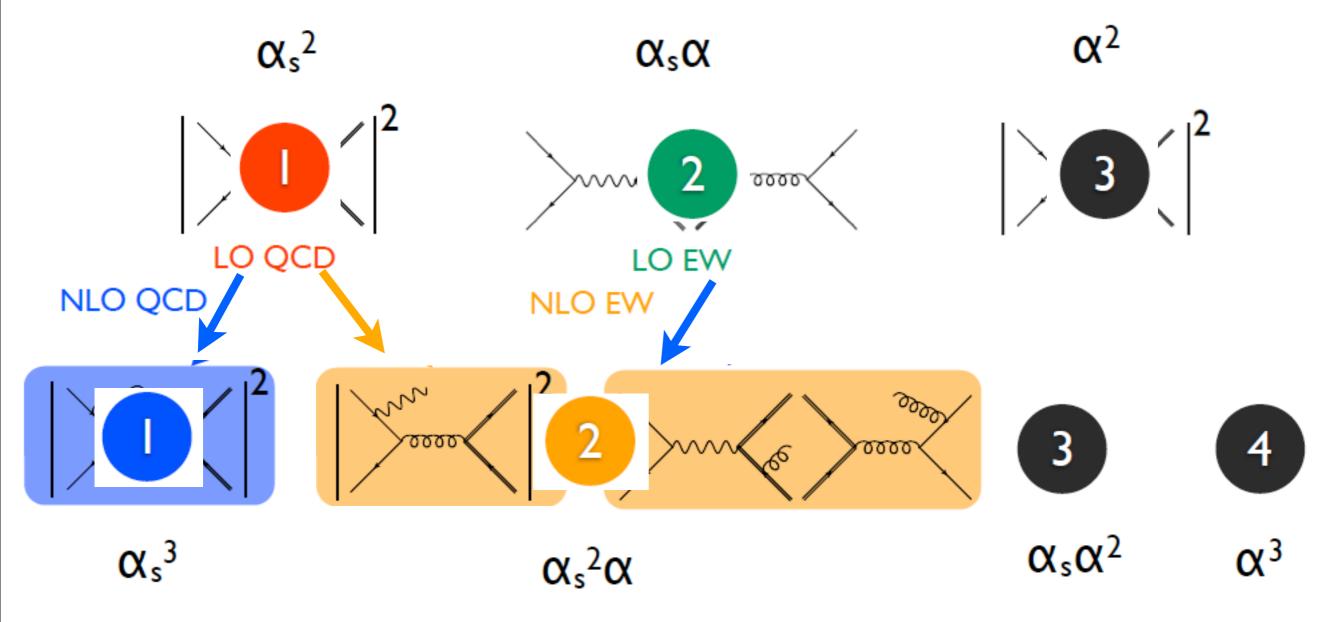
- Perturbative expansion in the Standard Model
 - Take dijet hadroproduction as an example Frederix, Frixione, Hirschi, Pagani, HSS, Zaro, JHEP (2017)



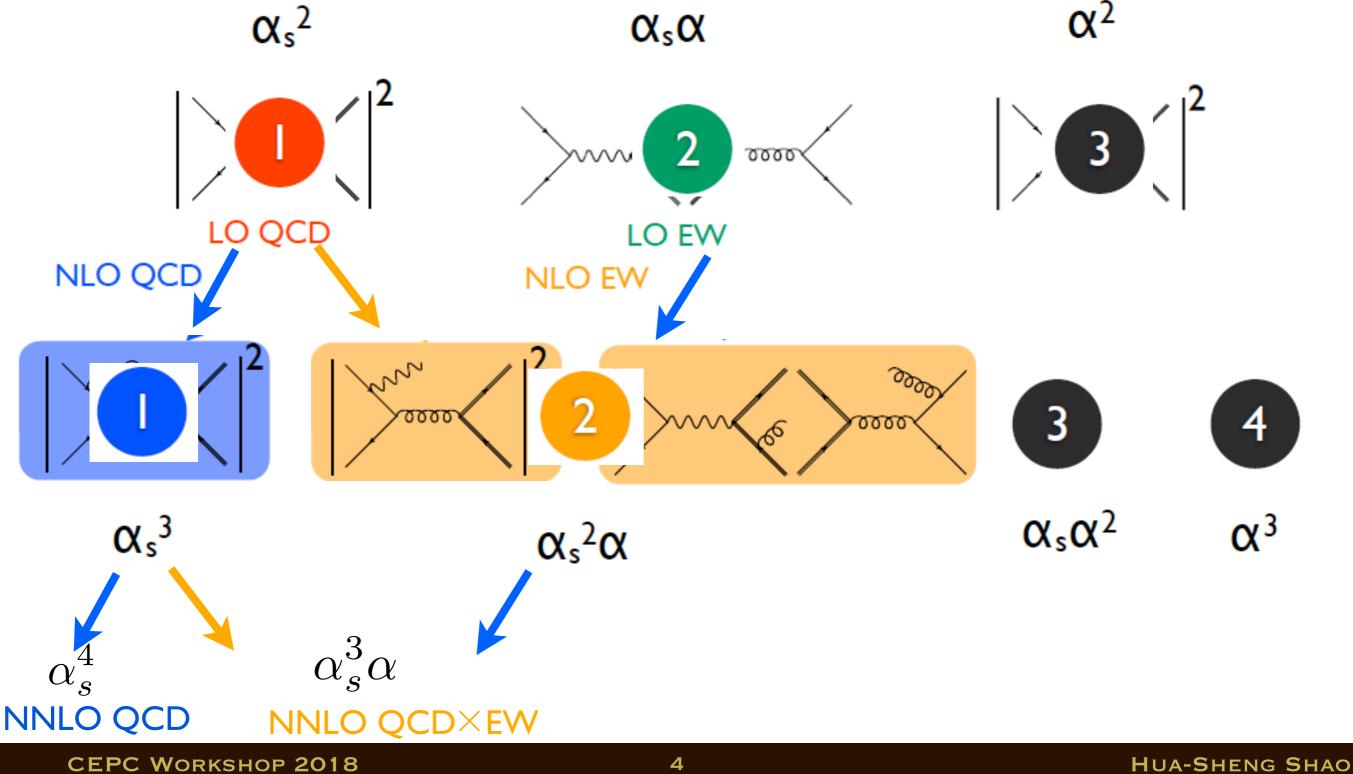
- Perturbative expansion in the Standard Model
 - Take dijet hadroproduction as an example Frederix, Frixione, Hirschi, Pagani, HSS, Zaro, JHEP (2017)



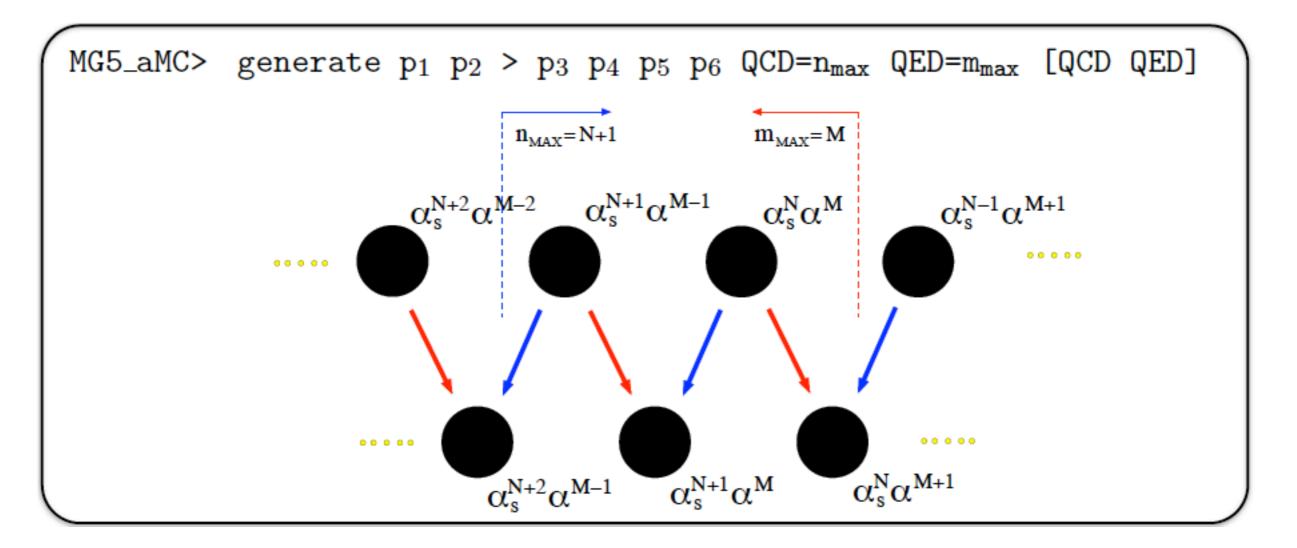
- Perturbative expansion in the Standard Model
 - Take dijet hadroproduction as an example Frederix, Frixione, Hirschi, Pagani, HSS, Zaro, JHEP (2017)



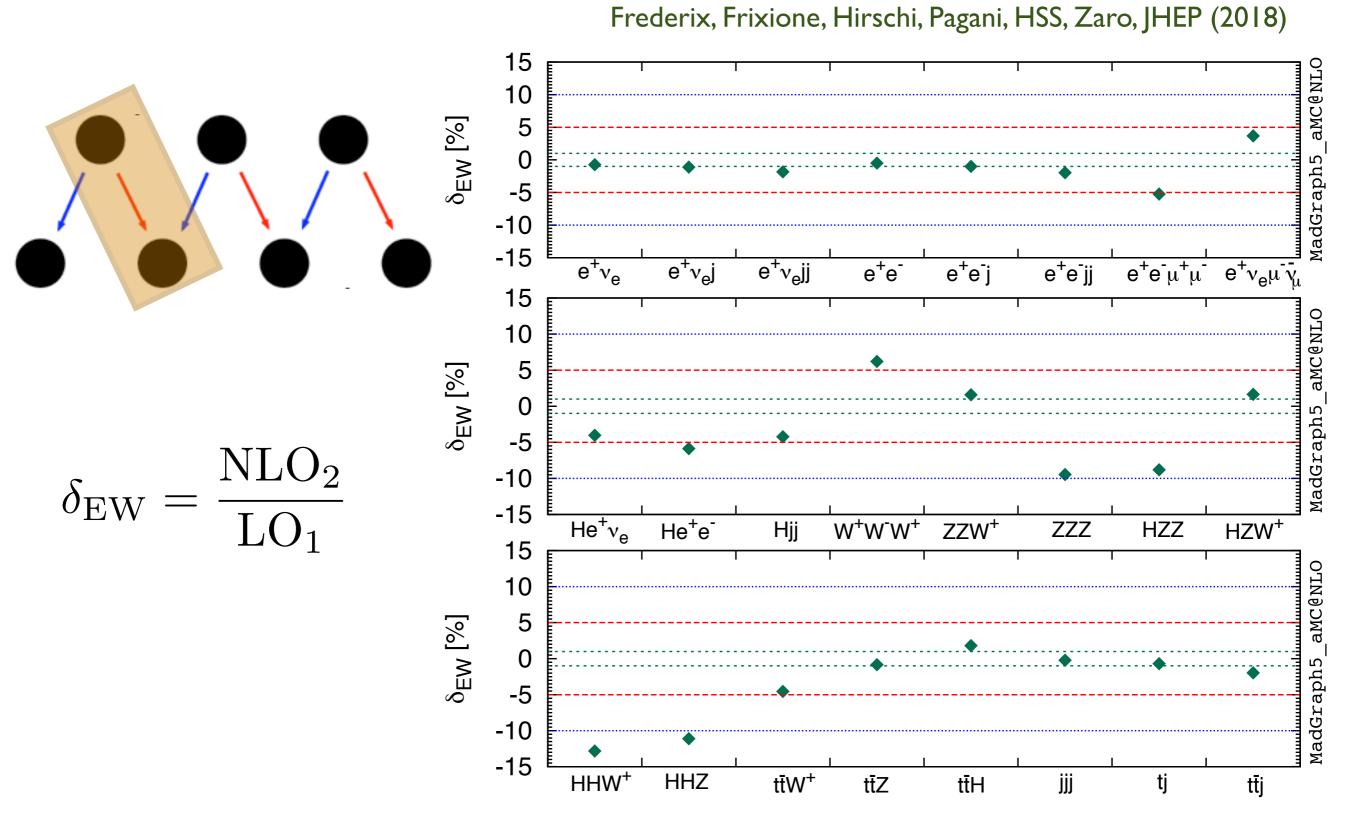
- Perturbative expansion in the Standard Model
 - Take dijet hadroproduction as an example Frederix, Frixione, Hirschi, Pagani, HSS, Zaro, JHEP (2017)



- Perturbative expansion in the Standard Model
 - Take dijet hadroproduction as an example Frederix, Frixione, Hirschi, Pagani, HSS, Zaro, JHEP (2017)


- Perturbative expansion in the Standard Model
 - Take dijet hadroproduction as an example Frederix, Frixione, Hirschi, Pagani, HSS, Zaro, JHEP (2017)

AUTOMATION OF COMPLETE NLO


• In MadGraph5_aMC@NLO v3.X Frederix, Frixione, Hirschi, Pagani, HSS, Zaro, JHEP (2018)

NLO EW @ LHC

Inclusive cross sections

FUTURE ELECTRON-POSITRON COLLIDERS

GENERATOR ISSUES FOR LEPTON COLLIDER

Processes at e⁺e⁻ without beam issues is an easier case of those at pp

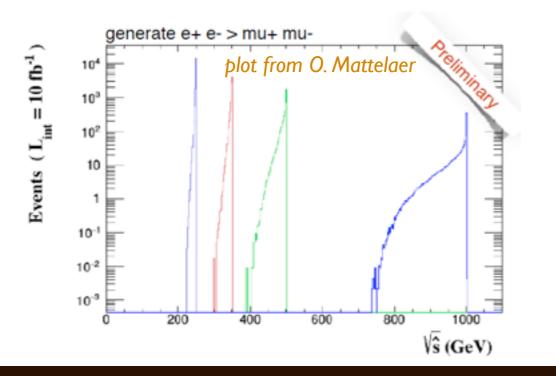
MG5_aMC paper, JHEP (2014)

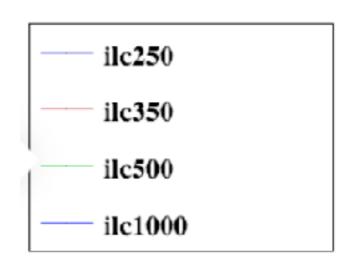
Pr	ocess		Cross see	ction (pb)		
Heavy	v quarks and jets	$LO \ 1 \ TeV$		NLO 1 TeV		$\delta_{\rm QCD} = \rm NLO_1/LO_1$
i.1	$e^+e^- ightarrow jj$	$6.223 \pm 0.005 \cdot 10^{-1}$	+0.0% -0.0%	$6.389 \pm 0.013 \cdot 10^{-1}$	$^{+0.2\%}_{-0.2\%}$	+2.7%
i.2	$e^+e^- \rightarrow jjj$	$3.401 \pm 0.002 \cdot 10^{-1}$		$3.166 \pm 0.019 \cdot 10^{-1}$		-6.9%
i.3	$e^+e^- ightarrow jjjjj$	$1.047 \pm 0.001 \cdot 10^{-1}$		$1.090 \pm 0.006 \cdot 10^{-1}$	+0.0% -2.8%	+4.1%
i.4	$e^+e^-\!\rightarrow\! jjjjjj$	$2.211 \pm 0.006 \cdot 10^{-2}$	$^{+31.4\%}_{-22.0\%}$	$2.771 \pm 0.021 \cdot 10^{-2}$	$^{+4.4\%}_{-8.6\%}$	+25%
i.5	$e^+e^- \rightarrow t\bar{t}$	$1.662 \pm 0.002 \cdot 10^{-1}$	$^{+0.0\%}_{-0.0\%}$	$1.745 \pm 0.006 \cdot 10^{-1}$	$^{+0.4\%}_{-0.4\%}$	+5.0%
i.6	$e^+e^- \rightarrow t\bar{t}j$	$4.813 \pm 0.005 \cdot 10^{-2}$	+9.3% -7.8%	$5.276 \pm 0.022 \cdot 10^{-2}$	$^{+1.3\%}_{-2.1\%}$	+9.6%
i.7*	$e^+e^- \rightarrow t\bar{t}jj$	$8.614 \pm 0.009 \cdot 10^{-3}$	$^{+19.4\%}_{-15.0\%}$	$1.094 \pm 0.005 \cdot 10^{-2}$		+27%
i.8*	$e^+e^- \rightarrow t\bar{t}jjj$	$1.044 \pm 0.002 \cdot 10^{-3}$	+30.5% -21.6%	$1.546 \pm 0.010 \cdot 10^{-3}$	+10.6% -11.6%	+48%
i.9*	$e^+e^- \rightarrow t\bar{t}t\bar{t}$	$6.456 \pm 0.016 \cdot 10^{-7}$	$^{+19.1\%}_{-14.8\%}$	$1.221 \pm 0.005 \cdot 10^{-6}$	+13.2% -11.2%	+89%
i.10*	$e^+e^- \rightarrow t\bar{t}t\bar{t}j$	$2.719 \pm 0.005 \cdot 10^{-8}$	+29.9% -21.3%	$5.338 \pm 0.027 \cdot 10^{-8}$	and the second sec	+96%
i.11	$e^+e^- \rightarrow b\bar{b}$ (4f)	$9.198 \pm 0.004 \cdot 10^{-2}$	$^{+0.0\%}_{-0.0\%}$	$9.282 \pm 0.031 \cdot 10^{-2}$	$^{+0.0\%}_{-0.0\%}$	+0.9%
i.12	$e^+e^- \rightarrow b\bar{b}j$ (4f)	$5.029 \pm 0.003 \cdot 10^{-2}$	+9.5% -8.0%	$4.826 \pm 0.026 \cdot 10^{-2}$		-4.0%
i.13*	$e^+e^- \rightarrow b\bar{b}jj$ (4f)	$1.621 \pm 0.001 \cdot 10^{-2}$	$^{+20.0\%}_{-15.3\%}$	$1.817 \pm 0.009 \cdot 10^{-2}$	$^{+0.0\%}_{-3.1\%}$	+12%
i.14*	$e^+e^- \rightarrow b\bar{b}jjj$ (4f)	$3.641 \pm 0.009 \cdot 10^{-3}$	+31.4% -22.1%	$4.936 \pm 0.038 \cdot 10^{-3}$	+4.8% -8.9%	+36%
i.15*	$e^+e^- \rightarrow b\bar{b}b\bar{b}$ (4f)	$1.644 \pm 0.003 \cdot 10^{-4}$	+19.9% -15.3%	$3.601 \pm 0.017 \cdot 10^{-4}$	and the second sec	+119%
i.16*	$e^+e^- \rightarrow b\bar{b}b\bar{b}j$ (4f)	$7.660 \pm 0.022 \cdot 10^{-5}$	+31.3% -22.0%	$1.537 \pm 0.011 \cdot 10^{-4}$		+101%
i.17*	$e^+e^- \!\rightarrow\! t\bar{t}b\bar{b}~(\rm 4f)$	$1.819 \pm 0.003 \cdot 10^{-4}$	$^{+19.5\%}_{-15.0\%}$	$2.923 \pm 0.011 \cdot 10^{-4}$	$^{+9.2\%}_{-8.9\%}$	+61%
i.18*	$e^+e^- \mathop{\rightarrow} t\bar{t}b\bar{b}j$ (4f)	$4.045 \pm 0.011 \cdot 10^{-5}$		$7.049 \pm 0.052 \cdot 10^{-5}$	$^{+13.7\%}_{-13.1\%}$	+74%

GENERATOR ISSUES FOR LEPTON COLLIDER

Processes at e⁺e⁻ without beam issues is an easier case of those at pp

MG5_aMC paper, JHEP (2014)


- The following aspects to be improved in order to have realistic simulations at lepton-lepton colliders
 - Beam polarization
 - Photon initial state: improved Weizsaecker-Williams formula (elastic)
 - Initial-state radiation
 - Beamstrahlung technical-related feature, important at ILC


GENERATOR ISSUES FOR LEPTON COLLIDER

Processes at e⁺e⁻ without beam issues is an easier case of those at pp

MG5_aMC paper, JHEP (2014)

- The following aspects to be improved in order to have realistic simulations at lepton-lepton colliders
 - Beam polarization
 - Photon initial state: improved Weizsaecker-Williams formula (elastic)
 - Initial-state radiation
 - Beamstrahlung technical-related feature, important at ILC

A FEW PROCESSES AT CEPC

- A (developing and not public) MG5_aMC branch is under construction to solve all the mentioned beam issues at lepton-lepton colliders. Frixione, Zaro, Zhao, ...
- I take the branch with rush runs at CEPC (240 GeV) WITH initial-state radiation (beamstrahlung is expected to be small within CEPC configuration). Democratic jet (include gluon, light quark, photon, light charged lepton) $\operatorname{anti}-k_T, R = 1.0, p_T(j) > 10 \text{ GeV}, |\eta(j)| < 4.5$

 $\sqrt{S} = 240 \text{ GeV} \quad \sigma(e^+e^- \to jj) \text{ [pb]} \quad \sigma(e^+e^- \to jjj) \text{ [pb]} \quad \sigma(e^+e^- \to jjj) \text{ [pb]}$

σ((e^+e^-)	\rightarrow	jjjj) [pb]	

LOI	Blocked	Blocked	Blocked
LO ₂		Blocked	Blocked
LO ₃			Blocked
NLOI	Blocked	Blocked	Blocked
NLO ₂	Blocked	Blocked	Blocked
NLO ₃		Blocked	Blocked
NLO ₄			Blocked
Sum	Blocked	Blocked	Blocked

* Gmu scheme and same parameter setup as done in Frederix, Frixione, Hirschi, Pagani, HSS, Zaro, JHEP (2018)

CEPC	WORKSHOP	2018

A FEW PROCESSES AT CEPC

- A (developing and not public) MG5_aMC branch is under construction to solve all the mentioned beam issues at lepton-lepton colliders. Frixione, Zaro, Zhao, ...
- I take the branch with rush runs at CEPC (240 GeV) WITH initial-state radiation (beamstrahlung is expected to be small within CEPC configuration). Democratic jet (include gluon, light quark, photon, light charged lepton) $\operatorname{anti}-k_T, R = 1.0, p_T(j) > 10 \text{ GeV}, |\eta(j)| < 4.5$

 $\sqrt{S} = 240 \text{ GeV} \quad \sigma(e^+e^- \to jj) \text{ [pb]} \qquad \sigma(e^+e^- \to jjj) \text{ [pb]} \qquad \sigma(e^+e^- \to jjjj) \text{ [pb]}$

LOI	$2.78\cdot 10^3$	Running	Blocked
LO_2		Running	Blocked
LO ₃			Blocked
NLOI	$1.44\cdot 10^0$	Running	Blocked
NLO ₂	$6.76\cdot 10^1$	Running	Blocked
NLO ₃		Running	Blocked
NLO ₄			Blocked
Sum	$2.85 \cdot 10^3 \pm 0.03\%_{ m scale}$	Running	Blocked

* Gmu scheme and same parameter setup as done in Frederix, Frixione, Hirschi, Pagani, HSS, Zaro, JHEP (2018)

CEPC	WORKSHOP	2018

A FEW PROCESSES AT CEPC

PRELIMINARY

- A (developing and not public) MG5_aMC branch is under construction to solve all the mentioned beam issues at lepton-lepton colliders. Frixione, Zaro, Zhao, et al.
- I take the branch with rush runs at CEPC (240 GeV) WITH initial-state radiation (beamstrahlung is expected to be small within CEPC configuration).

 $\sigma(e^+e^- \to ZZ) \text{ [pb]} \quad \sigma(e^+e^- \to W^+W^-) \text{ [pb]}$ $\sigma(e^+e^- \to ZH)$ [pb] $\sqrt{S} = 240 \text{ GeV}$ $1.11 \cdot 10^{0}$ $1.67 \cdot 10^{1}$ $2.05 \cdot 10^{-1}$ LO LO_2 LO₃ NLO₁ NLO₂ $-4.1 \cdot 10^{-3}$ $-5.0 \cdot 10^{-2}$ $-4.0 \cdot 10^{-2}$ NLO₃ NLO₄ $2.01 \cdot 10^{-1} \pm 0.1\%_{\text{scale}} = 1.06 \cdot 10^{0} \pm 0.05\%_{\text{scale}} = 1.67 \cdot 10^{1} \pm 0.03\%_{\text{scale}}$ Sum

* Gmu scheme and same parameter setup as done in Frederix, Frixione, Hirschi, Pagani, HSS, Zaro, JHEP (2018)

BEYOND NLO EXAMPLE: 7H

Gong, Li, Xu, Yang, Zhang, PRD (2017); Sun, Feng, Jia, Sang, PRD (2017)

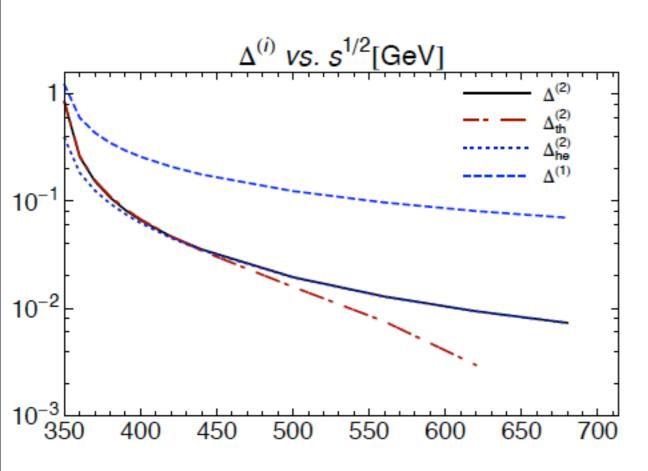
\sqrt{s}	schemes	$\sigma_{\rm LO}~({\rm fb})$	$\sigma_{\rm NLO}~({\rm fb})$	$\sigma_{\rm NNLO}$ (fb)
	$\alpha(0)$	223.14 ± 0.47	229.78 ± 0.77	$232.21^{+0.75+0.10}_{-0.75-0.21}$
240	$\alpha(M_Z)$	252.03 ± 0.60	$228.36^{+0.82}_{-0.81}$	$231.28^{+0.80+0.12}_{-0.79-0.25}$
	G_{μ}	239.64 ± 0.06	$232.46^{+0.07}_{-0.07}$	$233.29^{+0.07+0.03}_{-0.06-0.07}$
	$\alpha(0)$	223.12 ± 0.47	229.20 ± 0.77	$231.63^{+0.75+0.12}_{-0.75-0.21}$
250	$\alpha(M_Z)$	252.01 ± 0.60	0.01	$230.58\substack{+0.80+0.14\\-0.79-0.25}$
	G_{μ}	239.62 ± 0.06	$231.82 {\pm} 0.07$	$232.65^{+0.07+0.04}_{-0.07-0.07}$

- Fixed order without initial state radiations (and beamstrahlung).
- The inclusion of NLO EW corrections significantly reduce the EW scheme dependence.
- NNLO QCD×EW increases the cross section around I-3 fb.
- The remaining dominant uncertainty is from the EW scheme dependence, which is expected to be reduced only when one includes NNLO EW (pure EW) corrections.

LOOP-INDUCED NLO EXAMPLE: H+PHOTON

Sang, Chen, Feng, Jia, Sun, PLB (2017)

$\sqrt{s}(\text{GeV})$	150	200	220	240	250	270	290	310	330	340
σ^{LO} (10 ⁻² fb)	1.054	6.214	7.339	7.758	7.764	7.479	6.909	6.134	5.151	4.522
$\widetilde{T}_{\gamma,5}(10^{-2} \text{GeV}^{-1})$	-0.793	-0.378	-0.112	0.251	0.485	1.12	2.11	3.90	8.16	14.26
$\sigma^{\rm NLO}/\sigma^{\rm LO}$	0.56%	0.30%	0.09%	-0.21%	-0.41%	-0.96%	-1.86%	-3.45%	-6.85%	-10.59%
$\sqrt{s}(\text{GeV})$	360	380	400	420	500	600	700	800	900	1000
$\sigma^{\rm LO} \ (10^{-2} {\rm ~fb})$	2.570	2.977	3.433	3.763	4.079	3.604	3.018	2.518	2.118	1.801
$\widetilde{T}_{\gamma,5} (10^{-2} \text{GeV}^{-1})$	-2.26	-11.6	-13.4	-13.24	-9.65	-6.31	-4.45	-3.35	-2.63	-2.13
	+28.2 <i>i</i>	+16.6 <i>i</i>	+9.81 i	+5.76 <i>i</i>	-1.29 i	-3.21 i	-3.48 <i>i</i>	-3.38 <i>i</i>	-3.19 i	-3.00 <i>i</i>
$\sigma^{\rm NLO}/\sigma^{\rm LO}$						9.60%	7.37%	5.98%	5.02%	4.31%


- Fixed order without initial state radiations (and beamstrahlung).
- NLO QCD correction is quite small (-0.21%) at 240 GeV but increases quickly to ~20% when top-quark pair threshold is opened.

BEYOND NLO EXAMPLE: TOP PAIR

Gao, Zhu, PRL (2014); Chen, Dekkers, Heisler, Bernreuther, Si, JHEP (2016)

$$\sigma_{NNLO} = \sigma_{LO} \left(1 + \Delta^{(1)} + \Delta^{(2)} \right)$$

- NNLO QCD corrections (fixed order without ISR)
- The large QCD correction is from the threshold region, in which there are higher order corrections known.

Beneke, Kiyo, Marquard, Penin, Piclum, Steinhauser, PRL (2015); Beneke, Maier, Rauh, Ruiz-Femenia , JHEP (2018)

 The NNLO QCD correction decreases when energy increases. It is around percent level > 400 GeV.

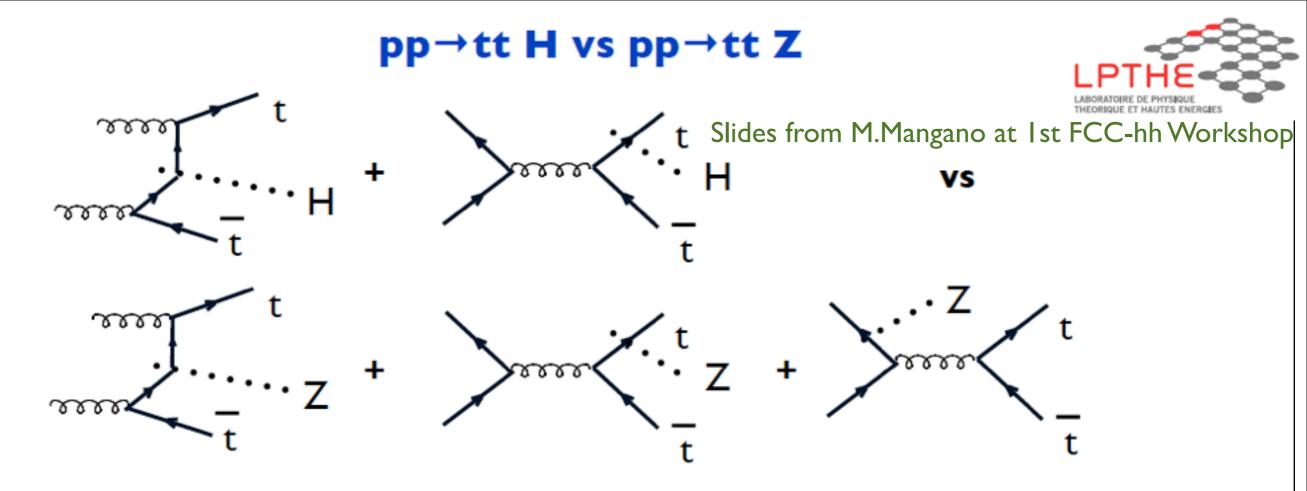
FUTURE 100 TEV HADRON COLLIDERS

CEPC WORKSHOP 2018

CURRENT THEORETICAL PRECISION

Theoretical uncertainty on production rates (FCC-hh physics report arXiv:1606.09408)

I 00 TeV	cross section [pb]	pert. error	param. error
gg→H	802	6-7%	4-5%
WH	15.710	0.1%	0.2%
ZH	11.178	0.5%	0.2%
VBF H	69.0	١%	2%
ttH	32.1	8%	2%


EXAMPLE: TTH VS TTZ

- Theoretical calculations of ttH and ttZ are known at complete NLO level Frederix, Hirschi, Pagani, HSS, Zaro, JHEP (2015,2018)
- NLO EW contributes -3% (ttH) and -5% (ttZ) for inclusive cross sections.

$t\bar{t}H$: $\delta(\%)$	$100 { m TeV}$	$t\overline{t}Z$: $\delta(\%)$	$100 { m TeV}$
NLO QCD	$40.8^{+9.3}_{-9.1}\pm1.0$	NLO QCD	$50.4^{+11.4}_{-10.9} \pm 1.1$
LO EW	0.0 ± 0.2	LO EW	-1.1 ± 0.2
LO EW no γ	-0.6 ± 0.0	LO EW no γ	-1.6 ± 0.0
NLO EW	-2.7 ± 0.0	NLO EW	-5.2 ± 0.1
NLO EW no γ	-2.7 ± 0.0	NLO EW no γ	-5.4 ± 0.0
HBR	0.91	HBR	0.85

- Subleading NLO terms are <1% for inclusive cross sections (at 13 TeV).
- QCD scale uncertainty does not capture these EW corrections
- How to measure percent-level Higgs Yukawa coupling ?
 - NNLO QCD corrections
 - Measure and calculate ttH/ttZ Mangano, Plehn, Reimitz, Pagani, Schell, HSS, JPG (2015)

To the extent that the qqbar \rightarrow tt Z/H contributions are subdominant:

- Identical production dynamics:

o correlated QCD corrections, correlated scale dependence o correlated α_s systematics

- $m_Z \sim m_H \Rightarrow$ almost identical kinematic boundaries:
- o correlated PDF systematics o correlated m_{top} systematics

For a given y_{top} , we expect $\sigma(ttH)/\sigma(ttZ)$ to be predicted with great precision

MSTW2008NLO, $\mu_0 = H_T/2$, NLO QCD

Mangano, Plehn, Reimitz, Schell, HSS, JPG (2015)

	$\sigma(t\bar{t}H)[{ m pb}]$	$\sigma(t\bar{t}Z)[{\rm pb}]$	$\frac{\sigma(t\bar{t}H)}{\sigma(t\bar{t}Z)}$
$13 { m TeV}$	$0.475^{+5.79\%+3.33\%}_{-9.04\%-3.08\%}$	$0.785^{+9.81\%+3.27\%}_{-11.2\%-3.12\%}$	$0.606^{+2.45\%+0.525\%}_{-3.66\%-0.319\%}$
$100 { m TeV}$	$33.9^{+7.06\%+2.17\%}_{-8.29\%-2.18\%}$	$57.9^{+8.93\%+2.24\%}_{-9.46\%-2.43\%}$	$0.585^{+1.29\%+0.314\%}_{-2.02\%-0.147\%}$

- Scale uncertainty reduces to 2% for the ratio.
- PDF+as uncertainty reduces to < 1% level

 $\mu_0 = H_T/2$,NLO QCD

		$\sigma(t\bar{t}H)[{ m pb}]$	$\sigma(t\bar{t}Z)[{ m pb}]$	$\frac{\sigma(t\bar{t}H)}{\sigma(t\bar{t}Z)}$
	MSTW2008	$0.475^{+5.79\%+2.02\%}_{-9.04\%-2.50\%}$	$0.785^{+9.81\%+1.93\%}_{-11.2\%-2.39\%}$	$0.606^{+2.45\%+0.216\%}_{-3.66\%-0.249\%}$
$13 { m TeV}$	CT10	$0.450^{+5.70\%}_{-8.80\%}{}^{+6.00\%}_{-5.34\%}$	$0.741^{+9.50\%}_{-10.9\%}$	$0.607^{+2.34\%+0.672\%}_{-3.47\%-0.675\%}$
	NNPDF2.3	$0.470^{+5.26\%+2.22\%}_{-8.58\%-2.22\%}$	$0.771^{+8.97\%+2.16\%}_{-10.6\%-2.16\%}$	$0.600^{+2.23\%+0.205\%}_{-3}$
	MSTW2008	$33.9^{+7.06\%+0.94\%}_{-8.29\%-1.26\%}$	$57.9^{+8.93\%+0.90\%}_{-9.46\%-1.20\%}$	$0.585^{+1.23\%}_{-2.02\%}$
$100~{\rm TeV}$	CT10	$32.4_{-8.11\%-2.95\%}^{+6.87\%+2.29\%}$	$55.5^{+8.73\%+2.16\%}_{-9.27\%-2.78\%}$	$0.584^{+1.27\%+0.189\%}_{-1.99\%-0.260\%}$
	NNPDF2.3	$33.2^{+6.62\%+0.78\%}_{-6.47\%-0.78\%}$	$56.9^{+7.62\%+0.75\%}_{-7.29\%-0.75\%}$	$0.584^{+1.29\%+0.0493\%}_{-2.01\%-0.0493\%}$

EXAMPLE: TTH VS TTZ

Mangano, Plehn, Reimitz, Schell, HSS, JPG (2015)

Parameter	value		Parameter	value
G_{μ}	$1.1987498350461625 \cdot 10^{-5}$		n_{lf}	5
m_t	173.3	173.3		173.3
m_W	80.419		$m_Z lpha^{-1}$	91.188
m_H	125.0	125.0		128.930
		$\sigma(t\bar{t}H)[{\rm pb}]$	$\sigma(t\bar{t}Z)[{\rm pb}]$	$\frac{\sigma(t\bar{t}H)}{\sigma(t\bar{t}Z)}$
	default	$0.475^{+5.79\%}_{-9.04\%}$	$0.785^{+9.81\%}_{-11.2\%}$	$0.606^{+2.45\%}_{-3.66\%}$
	$\mu_0 = m_t + m_{H,Z}/2$	$0.529^{+5.96\%}_{-9.42\%}$	$0.885^{+9.93\%}_{-11.6\%}$	$0.597^{+2.45\%}_{-3.61\%}$
$13 { m TeV}$	$m_t = y_t v = 174.1 \text{ GeV}$	$0.474^{+5.74\%}_{-9.01\%}$	$0.773^{+9.76\%}_{-11.2\%}$	$0.614^{+2.45\%}_{-3.66\%}$
	$m_t = y_t v = 172.5 \ {\rm GeV}$	$0.475^{+5.81\%}_{-9.05\%}$		$0.597^{+2.45\%}_{-3.65\%}$
	$m_H = 126.0 \text{ GeV}$	$0.464^{+5.80\%}_{-9.04\%}$	A A 1 M / U	$0.593^{+2.42\%}_{-3.62\%}$
	default	$33.9^{+7.06\%}_{-8.29\%}$	$57.9^{+8.93\%}_{-9.46\%}$	$0.585^{+1.29\%}_{-2.02\%}$
	$\mu_0 = m_t + m_{H,Z}/2$	$39.0^{+9.76\%}_{-9.57\%}$	$67.2^{+10.9\%}_{-10.6\%}$	$0.580^{+1.16\%}_{-1.80\%}$
$100~{\rm TeV}$	$m_t = y_t v = 174.1~{\rm GeV}$	$33.9^{+7.01\%}_{-8.27\%}$	$57.2^{+8.90\%}_{-9.42\%}$	$0.592^{+1.27\%}_{-2.00\%}$
	$m_t = y_t v = 172.5 \ {\rm GeV}$	$33.7^{+6.99\%}_{-8.31\%}$	$58.6^{+8.93\%}_{-9.46\%}$	$0.576^{+1.27\%}_{-1.99\%}$
	$m_H = 126.0 \text{ GeV}$	$33.2^{+7.04\%}_{-8.28\%}$	$57.9^{+8.93\%}_{-9.46\%}$	$0.575^{+1.25\%}_{-1.95\%}$

- Scale choice from dynamical scale to fixed scale, the results are well embed in scale uncertainty
- Mass dependences are similar at percent level for the ratio.

EXAMPLE: TTH VS TTZ

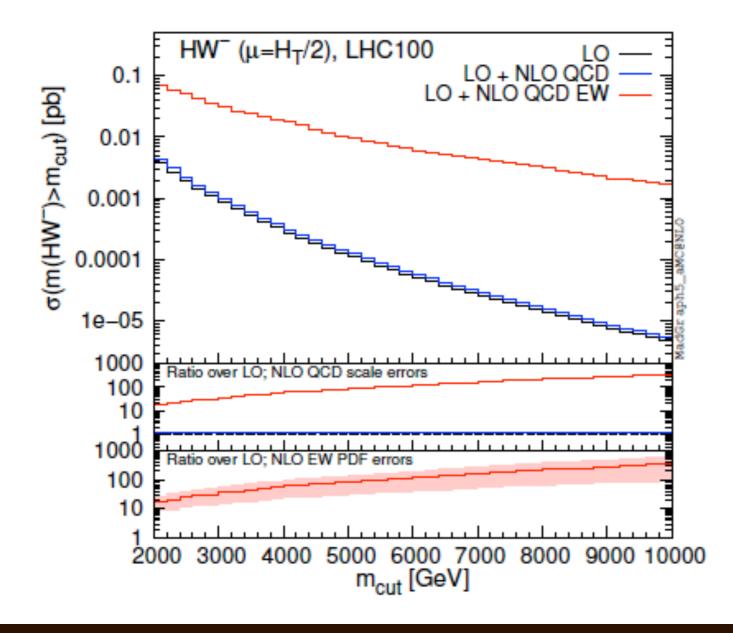
Mangano, Plehn, Reimitz, Schell, HSS, JPG (2015)

		$\alpha(m_Z)$ scheme		G_{μ} scheme			
		$\sigma(t\bar{t}H)[{\rm pb}]$	$\sigma(t\bar{t}Z)[{\rm pb}]$	$\frac{\sigma(t\bar{t}H)}{\sigma(ttZ)}$	$\sigma(t\bar{t}H)[{\rm pb}]$	$\sigma(t\bar{t}Z)[{\rm pb}]$	$\frac{\sigma(t\bar{t}H)}{\sigma(ttZ)}$
	NLO QCD	0.475	0.785	0.606	0.462	0.763	0.606
	$\mathcal{O}(\alpha_S^2 \alpha^2)$ Weak	-0.006773	-0.02516		0.004587	-0.007904	
$13 { m TeV}$	$\mathcal{O}(\alpha_S^2 \alpha^2) \ \mathrm{EW}$	-0.0045	-0.022		0.0071	-0.0033	
	NLO QCD+Weak	0.468	0.760	0.617	0.467	0.755	0.619
	NLO QCD+EW	0.471	0.763	0.617	0.469	0.760	0.618
	NLO QCD	33.9	57.9	0.585	32.9	56.3	0.585
	$\mathcal{O}(\alpha_S^2 \alpha^2)$ Weak	-0.7295	-2.146		0.0269	-0.8973	
$100 { m TeV}$	$\mathcal{O}(\alpha_S^2 \alpha^2) \ \mathrm{EW}$	-0.65	-2.0		0.14	-0.77	
	NLO QCD+Weak	33.1	55.8	0.594	32.9	55.4	0.594
	NLO QCD+EW	33.2	55.9	0.594	33.1	55.6	0.595

• (E)WK can be negative. Its impact is also at 2% level.

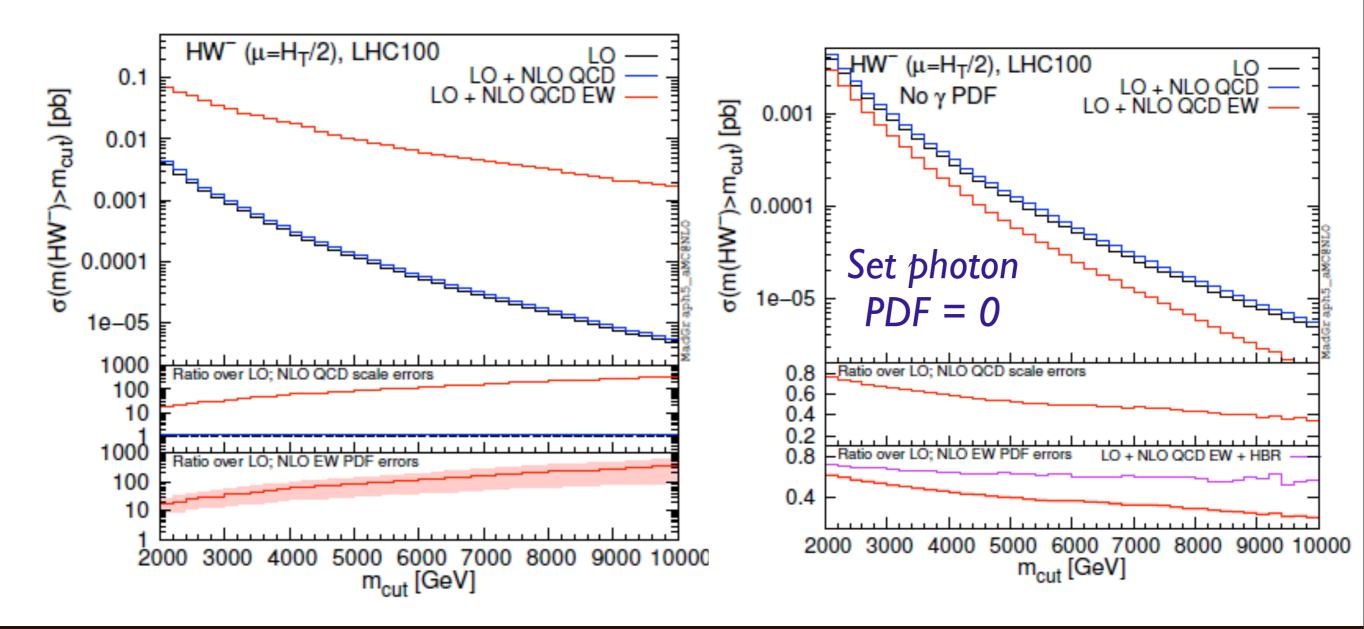
Mangano, Zanderighi et al., FCC-hh Physics report: SM processes '16

A funny example is HW production


- NLO EW: Ciccolini, Dittmaier, Kramer '03
- NLO EW with W decay: Denner, Dittmaier, Kallweit, Much '12

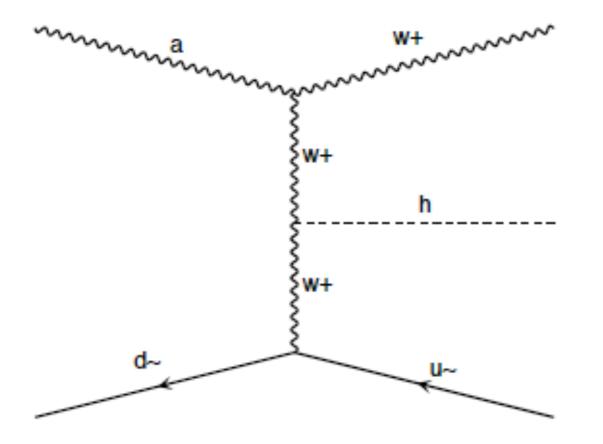
Mangano, Zanderighi et al., FCC-hh Physics report: SM processes 16

- A funny example is HW production
 - NLO EW: Ciccolini, Dittmaier, Kramer '03
 - NLO EW with W decay: Denner, Dittmaier, Kallweit, Much '12
- Huge EWC (~10-100) is observed above 2 TeV inv. mass (why ?)



Mangano, Zanderighi et al., FCC-hh Physics report: SM processes '16

- A funny example is HW production
 - NLO EW: Ciccolini, Dittmaier, Kramer '03
 - NLO EW with W decay: Denner, Dittmaier, Kallweit, Much '12
- Huge EWC (~10-100) is observed above 2 TeV inv. mass (why ?)
 - It is mainly coming from photon initial state

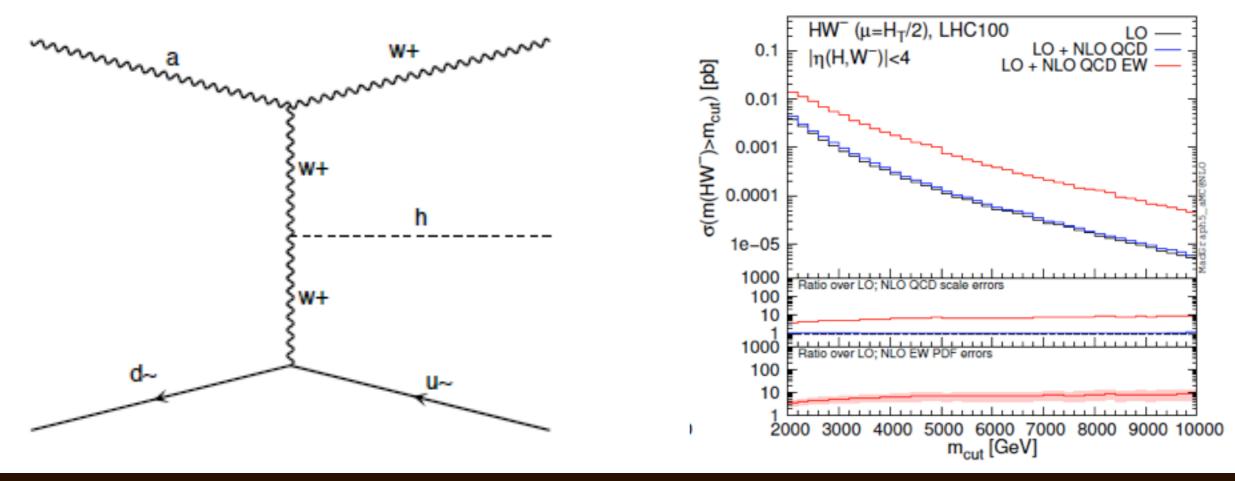


HUA-SHENG SHAO

Mangano, Zanderighi et al., FCC-hh Physics report: SM processes 16

A funny example is HW production

- NLO EW: Ciccolini, Dittmaier, Kramer '03
- NLO EW with W decay: Denner, Dittmaier, Kallweit, Much '12
- Huge EWC (~10-100) is observed above 2 TeV inv. mass (why ?)
 - It is mainly coming from photon initial state
 - There is no photon-quark or gluon-quark for H+jet at Born, when W soft/coll.
 - At Born, HW is produced via s-channel only, while NLO introduces t-channel
 - At large inv. mass, t-channel is dominant



Mangano, Zanderighi et al., FCC-hh Physics report: SM processes '16

- A funny example is HW production
 - NLO EW: Ciccolini, Dittmaier, Kramer '03
 - NLO EW with W decay: Denner, Dittmaier, Kallweit, Much '12
- Huge EWC (~10-100) is observed above 2 TeV inv. mass (why ?)
 - It is mainly coming from photon initial state
 - There is no photon-quark or gluon-quark for H+jet at Born, when W soft/coll.
 - At Born, HW is produced via s-channel only, while NLO introduces t-channel
 - At large inv. mass, t-channel is dominant
 - Such a contribution can be suppressed by cut e.g. on pseudorapidity

Mangano, Zanderighi et al., FCC-hh Physics report: SM processes '16

- A funny example is HW production
 - NLO EW: Ciccolini, Dittmaier, Kramer '03
 - NLO EW with W decay: Denner, Dittmaier, Kallweit, Much '12
- Huge EWC (~10-100) is observed above 2 TeV inv. mass (why ?)
 - It is mainly coming from photon initial state
 - There is no photon-quark or gluon-quark for H+jet at Born, when W soft/coll.
 - At Born, HW is produced via s-channel only, while NLO introduces t-channel
 - At large inv. mass, t-channel is dominant
 - Such a contribution can be suppressed by cut e.g. on pseudorapidity

EXAMPLE: 4-TOP AND TTW

$\sqrt{S} = 100 \text{ TeV}$	$pp \to tt\overline{tt}$
------------------------------	--------------------------

 $pp \to t\bar{t}W^{\pm}$

	$\delta [\%]$	$\mu = H_T/8$	$\mu = H_T/4$	$\mu = H_T/2$
	LO_2	-18.7	-20.7	-22.8
	LO_3	26.3	31.8	37.8
	LO_4	0.05	0.07	0.09
	LO_5	0.03	0.05	0.08
NLO QCD	NLO_1	33.9	68.2	98.0
NLO EW	NLO_2	-0.3	-5.7	-11.6
	NLO_3	-3.9	1.7	8.9
	NLO_4	0.7	0.9	1.2
	NLO_5	0.12	0.14	0.16
	NLO_6	< 0.01	< 0.01	< 0.01
	$\rm NLO_2 + \rm NLO_3$	-4.2	-4.0	2.7

δ [%]	$\mu = H_T/4$	$\mu = H_T/2$	$\mu = H_T$
LO_2	-	-	-
LO_3	0.9	1.1	1.3
NLO_1	159.5 (69.8)	149.5 (71.1)	142.7 (73.4)
NLO_2	-5.8(-6.4)	-5.6(-6.2)	-5.4(-6.1)
NLO_3	67.5(55.6)	68.8(56.6)	70.0(57.6)
NLO_4	0.2(0.1)	0.2(0.2)	0.3(0.2)

- CEPC-SppC will provide many invaluable studies on particle physics, which requires the theoretical predictions at least at the same precision level.
- The proposal will trigger new theoretical discussions and new theoretical calculations in the new collider environment, where the main studies are still LHC oriented.
- Complete NLO (QCD and EW) calculations were automated in the protor proton collision case and will be automated soon in the electron-positron collision case.

- CEPC-SppC will provide many invaluable studies on particle physics, which requires the theoretical predictions at least at the same precision level.
- The proposal will trigger new theoretical discussions and new theoretical calculations in the new collider environment, where the main studies are still LHC oriented.
- Complete NLO (QCD and EW) calculations were automated in the protor proton collision case and will be automated soon in the electron-positron collision case.

Stay tuned and thanks for listening !