The CEPC **Physics and Detector Conceptual Design Report**

International Workshop on High Energy Circular Electron Positron Collider **12 November 2018**

João Guimarães da Costa (for the CEPC Study Group)

Institute of High Energy Physics Chinese Academy of Sciences

Center of Mass Energy [GeV]

2

IHEP-CEPC-DR-2015-01

IHEP-EP-2015-01

IHEP-TH-2015-01

Can be downloaded from http://cepc.ihep.ac.cn/preCDR/volume.html

CEPC-SPPC

Preliminary Conceptual Design Report

Volume I - Physics & Detector

403 pages, 480 authors

The CEPC-SPPC Study Group

2017-1-24

March 2015

IHEP-CEPC-DR-2015-01

IHEP-AC-2015-01

CEPC-SPPC

Preliminary Conceptual Design Report

Volume II - Accelerator

328 pages, 300 authors

The CEPC-SPPC Study Group

March 2015

Mini-Review of Preliminary CDR

Reviewers:

Alexandre Glazov (DESY), Charlie Young (SLAC), Sebastian Grinstein (Barcelona), Alberto Belloni (Maryland), Jianming Qian (Michigan), Walter Snoeys (CERN), Daniela Bortoletto (Oxford), Franco Grancagnolo (INFN)

Draft-0 preliminary chapters

- Chapter 3: Detector concepts (partial)
- Chapter 4: Vertex detector
- * Chapter 5: Tracking system (TPC, silicon tracker, silicon-only concept, drift chamber)
- * Chapter 6: Calorimeter (PFA and DR calorimeter options)
- Chapter 7: Magnet system
- Chapter 8: Muon system
- * Chapter 10: MDI, beam background and luminosity measurement
- Chapter 11: Physics performance (partial)

Minutes and comments: https://indico.ihep.ac.cn/event/7384/material/slides/1.pdf

https://indico.ihep.ac.cn/event/7384/ 10-11 November, 2017

IHEP-CEPC-DR-2018-XX IHEP-EP-2018-XX IHEP-TH-2018-XX

CEPC

Conceptual Design Report

Volume I - Physics & Detector

The CEPC Study Group Spring 2018

IHEP-CEPC-DR-2018-02

IHEP-EP-2018-01

IHEP-TH-2018-01

Conceptual Design Report

Volume II - Physics & Detector

http://cepc.ihep.ac.cn/

The CEPC Study Group October 2018

405 pages

➡ Glossary

CEPC CDR, Vol. 2 — Physics and Detector

- → Executive Summary
- **1**. Introduction
- 2. Overview of the Physics Case for CEPC
- -3. Experimental Conditions, Physics Requirements and **Detector Concepts**
- 4. Tracking System
- 5. Calorimetry
- 6. Detector Magnet System
- 7. Muon Detector System
- 8. Readout Electronics, Trigger and Data Acquisition
- 9. Machine Detector Interface and Luminosity Detectors
- **10**. Simulation, Reconstruction and Physics Object See Manqi's talk Performance
- **11.** Physics Performance with Benchmark Processes
- **12. Future Plans and R&D Prospects**
- 13. Summary
- Author List

IHEP-CEPC-DR-2018-02

IHEP-EP-2018-01

IHEP-TH-2018-01

CEPC

Conceptual Design Report

Volume II - Physics & Detector

http://cepc.ihep.ac.cn/

The CEPC Study Group October 2018

CEPC CDR, Vol. 1 and Vol. 2 — authorship

1143 authors from **221 institutions**

29% from foreign institutions

24 countries

Australia	3
Belgium	3
Canada	3
Denmark	1
France	18
Germany	11
Indian	1
Israel	4
Italy	95
Japan	6
Korea	9
Mexico	1
Morocco	1
Netherlands	1
Pakistan	2
Russia	11
Serbia	6
South Africa	2
Spain	5
Sweden	2
Switzerland	9
UK	16
US	118

Editorial Team: 41 people / 20 institutions

Name	Chapters	Institution
Joao Guimaraes da Costa	General, 1, 3, 12	IHEP
Yuanning Gao	General	Peking Univ.
Shan Jin	General	Nanjing Univ.
Jianming Qian	General, 1, 10, 11	Michigan Univ.
Christopher Tully	General, 8	Princeton Univ.
Charles Young	General	SLAC
Lian-Tao Wang	2	Univ. of Chicago
Manqi Ruan	3, 10, 11	IHEP
Hongbo Zhu	3, 9	IHEP
Mingyi Dong	4.1	IHEP
Yunpeng Lu	4.1	IHEP
Qun Ouyang	4.1	IHEP
Zhigang Wu	4.1	IHEP
Zhi Deng	4.2	Tsinghua Univ.
Yulan Li	4.2	Tsinghua Univ.
Huirong Qi	4.2	IHEP
Meng Wang	4.2	Shandong Univ.
Chengdong Fu	4.3	IHEP
Wei-Ming Yao	4.3	Berkeley Lab
Franco Grancagnolo	4.4	Univ. of Lecce, INF
Jianbei Liu	5.3	USTC

Name	Chapters	Institutio
Tao Hu	5.3	IHEP
Haijun Yang	5.4	SJTU
Franco Bedeschi	5.5	Univ. of Pisa,
Roberto Ferrari	5.5	Univ. of Pavia
Wei Zhao	6	IHEP
Zian Zhu	6	IHEP
Paolo Giacomelli	7	Univ. of Bold
Liang Li	7	SJTU
Fei Li	8	IHEP
Zhenan Liu	8	IHEP
Kejun Zhu	8	IHEP
Suen Hou	9	Academia S
anka Bozovic Jelisavcic	9	Univ. of Belg
Gang Li	10	IHEP
Yaquan Fang	11	IHEP
Qiang Li	11	Peking Ur
Maarten Boonekamp	11	Paris-Sacl
Zhijun Liang	11	IHEP
Fulvio Piccinini	11	Univ. of Pavia
Xin Shi	12	IHEP

INFN INFN

sinica grade

The Physics Goals — Shopping List **Chapter 2 - Physics Case**

- 2.1 CEPC: the precision frontier 2.2 Higgs boson and electroweak symmetry breaking Naturalness 2.2.1 Electroweak phase transition 2.2.2 2.3 Exploring new physics Exotic Higgs boson decays 2.3.1 Exotic Z boson decays 2.3.2 2.3.3 Dark matter and hidden sectors 2.3.4 Neutrino connection 2.3.5 Extended Higgs sector 2.4 QCD precision measurement Precision α_s determination 2.4.1 2.4.2 Jet rates at CEPC 2.4.3 Non-global logarithms
 - 2.4.4 QCD event shapes and light quark Yukawa coupling
- Flavor Physics with the Z factory of CEPC 2.5
 - Rare B decays 2.5.1
 - 2.5.2 Tau decays
 - Flavor violating Z decays 2.5.3
 - 2.5.4 Summary

(see Nathaniel Craig talk)

Input from: Chapter 11 **Physics Performance** with **Benchmark Processes**

8

11

11

20

29

30

8

Physics requirements (from benchmark processes)

 $H \to \gamma \gamma$

ls	Detector subsystem	Performance requirement
()	Tracker	$\Delta(1/p_T) = 2 \times 10^{-5} \oplus \frac{0.001}{p(\text{GeV}) \sin^{3/2}}$
$\bar{c}/gg)$	Vertex	$\sigma_{r\phi} = 5 \oplus rac{10}{p({ m GeV}) imes \sin^{3/2} heta} (\mu{ m m})$
$(*, ZZ^*)$	ECAL HCAL	$\sigma_E^{\rm jet}/E =$ $3 \sim 4\%$ at 100 GeV
γ)	ECAL	$\frac{\Delta E/E}{\frac{0.20}{\sqrt{E(\text{GeV})}} \oplus 0.01}$

CEPC: 2.5 Detector Concepts

Particle Flow Approach

Baseline detector ILD-like (3 Tesla)

Full silicon tracker concept

Final two detectors likely to be a mix and match of different options

CEPC plans for **2** interaction points

IDEA Concept also proposed for FCC-ee

CEPC CDR-baseline detector

CEPC CDR baseline conceptual detector

MDI Lumical

Beam pipes

L* = 2.2 m Cross angle = 33 mrad

Interaction region: Machine Detector Interface

One of the most complicated issue in the CEPC detector design

13

CEPC CDR Alternative Conceptual Detector: IDEA

- Inspired on work for 4th detector concept for ILC
 - Only concept with calorimeter outside the coil

	Magnet: 2 Tesla, 2.1 m radius
r	Thin (~ 30 cm), Iow-mass (~0.8 X
= 200 cm	Vertex: Similar to CEPC default
= 30 cm	* Drift chamber: 4 m long; Radius ~30-20 ~ 1.6% X ₀ , 112 layers
250 cm	Preshower: ~1 X ₀
	* Dual-readout calorimeter: 2 m/8 λ _{int}
450 cm	* (yoke) muon chambers

0 cm,

14

Tracker Detector – Baseline

Tracker material budget/layer: ~0.50-0.65% X/X₀

25 cm

12 cm

Total Silicon area ~ 68 m²

Microstrip sensors for most of tracker

Baseline Pixel Detector Layout 3-ladders each with two layers of pixel sensors

		R (mm)	z (mm)	$ \cos \theta $	$\sigma(\mu m)$
Ladder	Layer 1	16	62.5	0.97	2.8
1	Layer 2	18	62.5	0.96	6
Ladder	Layer 3	37	125.0	0.96	4
2	Layer 4	39	125.0	0.95	4
Ladder	Layer 5	58	125.0	0.91	4
3	Layer 6	60	125.0	0.90	4

+ Innermost layer: $\sigma_{SP} = 2.8 \ \mu m$ + Polar angle $\theta \sim 15$ degrees + Material budget $\leq 0.15\%X_0/layer$

Implemented in GEANT4 simulation framework (MOKKA)

R&D goals and activities

• Sensor R&D targeting:

	Specs
Single point resolution ne	ear IP: < 3-5 µm
Power consumption:	< 100 mW/cm ²
Integration readout time:	< 10-100 µs
Radiation (TID)	> 2.5 MRad
ensors technologie	S
	Process

CMOS pixel sensor (CPS) TowerJazz CIS 0.18 µm **SOI** pixel sensor LAPIS 0.2 µm

• Full size prototype by 2023: **Explore light material construction** Full size chip

17

Time Projection Chamber (TPC) **TPC** detector concept

• Low material budget:

- <1% X₀ in r
- **10% X₀ for readout endcaps in Z** ullet

Readout by: Micro-Pattern Gas Detector (MPGD)

Time Projection Chamber (TPC) **TPC** detector concept

- 3 Tesla magnetic field —> reduces diffusion of drifting electrons
- Position resolution: ~100 μ m in r ϕ •
- dE/dx resolution: 5% •
- **Problem: Ion Back Flow —> track** • distortion

Assumes 5 ions backflow from readout into main gas system per primary ionization

Hybrid: GEM and Micromegas readout

R&D on-going

19

Time Projection Chamber (TPC) R&D by: IHEP, Tsinghua and Shandong **TPC detector concept**

Hybrid: GEM and Micromegas readout

Small prototype built **R&D** on-going

Laser calibration and alignment system

Small prototype with Nd:YAG laster built **R&D on-going**

Silicon Tracker Detector – Baseline

Tracker material budget/layer: ~0.50-0.65% X/X₀

Required resolution $\sigma_{SP} < 7 \ \mu m$

Sensor technology

- **1. Microstrip sensors** double layers: stereo angle: 5°-7° strip pitch: 50 µm
- 2. Large CMOS pixel sensors (CPS)

Power and Cooling

1. DC/DC converters 2. Investigate air cooling

Total Silicon area ~ 68 m²

Extensive opportunities for international participation

Baseline Tracker Detector

Transverse momentum resolution for single muon tracks

Inclusion of ETD should improve resolution

22

y Berkeley and Argonne

edundancy and limited particle identification (dE/dx)

Drift Chamber Option – IDEA Concept

Lead by Italian Colleagues

and MEG2 experiments

Follows design of the KLOE

Low-mass cylindrical drift chamber

- Length: 4 m **Radius: 0.3-2m** Gas: 90%He – 10%iC₄H₁₀ Material: 1.6% X₀ (barrel)
- •

Layers: $14 SL \times 8 layers = 112$ Cell size: 12 - 14 mm

Stereo angle: 50-250 mrad

- Spatial resolution: < 100 µm dE/dx resolution: 29
- Max drift time: <400 nsec Cells: 56,448

MEG2 prototype being tested

Calorimeter options

Chinese institutions have been focusing on Particle Flow calorimeters

R&D supported by MOST, NSFC and **HEP** seed funding

Hadronic

New

(*) SDHCAL with RPC and Stainless Steel (SJTU + IPNL, France) SDHCAL with ThGEM/GEM and Stainless Steel (IHEP + UCAS + USTC) (*) HCAL with Scintillator+SiPM and Stainless Steel (IHEP + USTC + SJTU)

ECAL with Silicon and Tungsten (LLR, France) ECAL with Scintillator+SiPM and Tungsten (IHEP + USTC)

(*) Dual readout calorimeters (INFN, Italy + Iowa, USA)

ECAL Calorimeter — Particle Flow Calorimeter Scintillator-Tungsten Sandwich ECAL

Superlayer (7 mm) is made of:

- 3 mm thick: Tungsten plate
- 2 mm thick: 5 x 45 mm²
- 2 mm thick: Readout/service layer

Plastic scintillator 5 x 45 mm² (2 mm thick)

R&D on-going:

- SiPM dynamic range
- Scintillator strip non-uniformity
- Coupling of SiPM and scintillator

Mini-prototype tested on testbeam at the IHEP

HCAL Calorimeter — Particle Flow Calorimeter Scintillator and SiPM HCAL (AHCAL)

Dual Readout Calorimeter

Lead by Italian colleagues: based on the DF

Projective 4π layout implemented into CEPC simulation (based on 4th Detector collaboration design)

Covers full volume up to $|\cos(\theta)| = 0.995$ with 92 different types of towers (wedge)

4000 fibers (start at different dept 4000 fibers (start at different depths to keep constant the sampling fraction)

/**5**m Εl 1.8m $\cos(\text{theta}) > 0.995$

Expected resolution: EM: ~10%/sqrt(E) Hadronic: 30-40%/sqrt(E)

Studying different readout schemes **PMT vs SiPM**

Several prototypes from RD52

nave been built

Superconductor solenoid development **3 Tesla Field Solenoid**

Default is NbTi Rutherford SC cable (4.2K) High-Temperature SC cable is also being considered (YBCO, 20K)

Design for 2 Tesla magnet presents no problems Thin HTS solenoid being designed for IDEA concept **Double-solenoid design also available**

Muon Detector System

Baseline Muon detector

- 8 layers
- Embedded in Yoke
- Detection efficiency: > 95%

Baseline: Bakelite/glass RPC

Other technologies considered

Monitored Drift Tubes Gas Electron Multiplier (GEM) MicroMegas

New technology proposal (INFN): µRwell

Better resolution (200-300 µm) at little extra cost (?)

Muon system: open studi

Good experience in China on gas detectors little strong direct R&D on CEPC — rather c international collaboration

Layout optimization:

- Visit the requirements for number of lay
- Implications for exotic physics searches
 Use as a tail catcher / muon tracker (TCMT)
 - \cdot lot operative recolution with without TCMT
- Jet energy resolution with/without TCMT Detector industrialization

Chapter 11: Physics Performance with Benchmark Processes

e+e-H: 10³ events

Observables:

Higgs mass, CP, σ (ZH), event rates ($\sigma(ZH, vvH)^*Br(H \rightarrow X)$), **Differential distributions**

> **Extract:** Absolute Higgs width, couplings

S/B

Higgs Couplings Measurement

Precision of Higgs couplings measurement compared to HL-LHC

 $\kappa_f = \frac{g(hff)}{g(hff; SM)}, \ \kappa_V = \frac{g(hVV)}{g(hVV; SM)}$

*K*_z ~ 0.2 %

ATL-PHYS-PUB-2014-016

Electroweak observables at CEPC

In addition: 2-year run at Z-pole and 1-year run at WW threshold

Precision Electroweak Measurements at the CEPC

		 				 -		
		 				 -		
		 	;					
rover	nents							
		 				 _		
		 — ·						
		 _						
		 _ ·						
_								
								1
								_
								_
				_ L				
	\mathbf{R}	P		ΛD)			
	116			A	FR	IV	V	

CEPC "optimistic" Schedule

 CEPC data-taking starts before the LHC program ends Possibly concurrent with the ILC program

Construction (2022-2030)

Data taking (2030 - 2040)

- Seek approval, site decision - Construction during 14th 5-year plan

International Review of CEPC CDR – Vol.2 Beijing, September 13-15

International Review Committee (11 members):

Claudia Cecchi, INFN Perugia, Italy Mogens Dam, Niels Bohr Institute, Copenhagen, Denmark Sasha Glazov, DESY, Hamburg, Germany **Christophe Grojean, DESY Hamburg and Humboldt U. Berlin, Germany** Liang Han, University of Science and Technology, China Tao Han, University of Pittsburgh, USA **Bill Murray, Warwick University and RAL, UK** Maxim Perelstein, Cornell University, USA Marcel Stanitzki, DESY, Hamburg, Germany Marcel Vos (chair), IFIC UV/CSIC, Valencia, Spain Hitoshi Yamamoto, Tohoku University, Sendai, Japan

Several other members of the HEP community provided comments and input for which we are thankful

International Review of CEPC CDR – Vol.2 Beijing, September 13-15

The review committee congratulates the CEPC study team with the successful completion of the conceptual design report (CDR). The document provides a complete, and very readable, description of the project. The scientific goals presented in the report are well motivated and aligned with the priorities of the international high-energy physics community. The report also presents a conceptual design for the CEPC experiments, with plausible solutions to address the main challenges. We believe that the studies reported in the CDR fully achieved the goals appropriate at this stage of the project, and we strongly encourage the CEPC team to proceed with the preparation of the technical design report.

o o o o o

Several challenges are identified, where more work is needed towards a technical design report.

59 recommendations for TDR follow

Final remarks **CEPC Detector CDR completion is a major milestone for the CEPC project *** Two significantly different detector concepts are included **High-magnetic field (3 Tesla):** PFA-oriented — with TPC or full-silicon tracker ***** Low-magnetic field (2 Tesla): with drift chamber and dual readout calorimeter

From 2018-2022, R&D towards CEPC TDR

***** Key technologies are under R&D and put to prototyping: **X** Vertex detector, TPC, calorimeters, magnets * e.g. Drift chamber, dual readout calorimeter, vertex detector and muon chamber * INFN, SLAC, Iowa State Univ., Belgrade, LLR, IPNL, Liverpool, Oxford, Barcelona, etc... ***** CEPC funding in China adequate for required R&D program * Seeking international nominations for new Detector Subgroup structure

CEPC CDR: http://cepc.ihep.ac.cn/

- International colleagues getting more heavily involved (about 300 foreign CDR authors)
- ***** Move into 2 international collaborations as soon as possible

Concepts parameter comparison

Concept

Tracker

Solenoid B Solenoid Ir Solenoid L L* (m) VTX Inner Tracker Ou Calorimete Calorimeter ECAL Cell ECAL Tim ECAL X_0 HCAL Lay HCAL Abs HCAL λ_I DRCAL C DRCAL Ti DRCAL A Overall He Overall Let

	ILD	CEPC baseline	IDEA
	TPC/Silicon	TPC/Silicon	Drift Chamber/Si
		or FST	
B-Field (T)	3.5	3	2
nner Radius (m)	3.4	3.2	2.1
length (m)	8.0	7.8	6.0
	3.5	2.2	2.2
Radius (mm)	16	16	16
ter Radius (m)	1.81	1.81	2.05
er	PFA	PFA	Dual readout
$\operatorname{er} \lambda_I$	6.6	5.6	7.5
l Size (mm)	5	10	_
ne resolution (ps)	_	200	_
	24	24	_
ver Number	48	40	_
sorber	Fe	Fe	_
	5.9	4.9	_
ell Size (mm)	-	_	6.0
ime resolution (ps)	_	_	100
bsorber	_	_	Pb or Cu or F
eight (m)	14.0	14.5	11.0
ngth (m)	13.2	14.0	13.0

· ·

^re

38

Challenges in vertex detectors

Vertex detector design driven by needs of flavor tagging

- Extremely accurate/precise
- Extremely light

Circular colliders: continuous operation \rightarrow more cooling \rightarrow more material

Large surfaces: ~ 1 m²

Single point resolution $\sigma < 3 - 5 \mu m$

Thin sensors and ASICs Light-weight support Low material budget < 0.1 — 0.3%X₀ per layer **Power pulsing (LC)** Air cooling Low power dissipation $\leq 50 \text{ mW/cm}^2$

> Time stamping ~10 ns (CLIC) ~300 ns - µs (ILC/CC)

Silicon pixel-detector technologies

Systematics R&D studies have focused on Pixel implementation, with Pixel sizes around $25 \times 25 \ \mu m^2$ Studies equally valid for the main tracker, even though it will have larger cell sizes

SOI Silicon -On -Insulator

Monolithic Active Pixel Sensor (MAPS)

Fully Integrated CMOS Technology

- ♦ CMOS Image Pixel Sensors —> benefit from industrialization
 - → Commercial process (8" or 12" wafers)
 - → Multiple vendors
 - Potentially cheaper interconnection processes available
 - → Thin sensor (50–100 um) have less material

Early Generations

- Charge collection mainly by diffusion
- \bullet Timing limited by rolling-shutter readout (μ s)

Recent advances

- Moving towards smaller feature size (TowerJazz 180 nm)
- Promising timing performance

Successfully deployed in HEP, with increasingly demanding requirements:

- Test-beam telescopes
- STAR @ RHIC
- CBM MVD @ FAIR
- ALICE ITS upgrade
- Baseline technology for ILD VTX, under study for CEPC and CLIC

ALPIDE CMOS Pixel Sensor

		וח) uc	7
	ALPIDE	<i>lesolutio</i>	6
Pixel dimensions	26.9 µm × 29.2 µm		5
Spatial resolution	~ 5 µm		3
Time resolution	5-10 µs		
Hit rate	~ 10 ⁴ /mm ² /s		0
Power consumption	< ~20-35 mW/cm ²	iciency (%)	98
Radiation tolerance	300kRad 2×10 ¹² 1 MeV n _{eq} /cm ²	etection Eff	96 94 94 94

Almost OK specifications Need lower resolution Higher radiation tolerance

⁸ F

Ê

MATERIAL REDUCTION

Non conventional use of Carbon Fibre Reinforced Plastic (CFRP) materials for Vertex Detectors to match the requirement of minimum material budget, high rigidity, thermal management.

ALICE

ATLAS ITK module support structure with copper-Kapton cocured tape and embedded CO2

cooling (1.4 m Long)

- 50 µm DMAPS
- 25 µm Kapton Flexprint
- 50 µm Kapton support frame
- < 1‰ Radiation length

Carbon Nanotubes

Allotrope of carbon with a cylindrical nanostructure Very high Therma Conductivity (TC=3500 W/mK)

Graphene

One atomic-layer thin film of carbon atoms in honeycomb lattice. Graphene shows outstanding thermal performance, the intrinsic TC of a single layer is 3000-5000 W/mK

Full Silicon Tracker Concept

Field Cage (producing uniform E-field)

E-field

B-1

field

Cathode (central membrane)

	T					
	L					
					1	

Full Silicon Tracker Concept

		FST FST2					FST				FST2			
VXD	R	(m)	$\pm z$ (m)	R	(m)	$\pm z$ (m)	SOT	R	(m)	$\pm z$ (m)	Туре	R	(m)	$\pm z$ (m)
Layer 1	0.0	016	0.078	0.0)22	0.091	Layer 1	0.	153	0.368	D	0.2	344	0.793
Layer 2	0.0	025	0.125	0.0)38	0.091	Layer 2	0	321	0.644	D	0.7	718	1.029
Layer 3	0.0	037	0.150	0.0)58	0.091	Layer 3	0.0	603	0.920	D	1.(082	1.391
Layer 4	0.0	038	0.150	0.0)79	0.091	Layer 4	1.	000	1.380	D	1.4	446	1.746
Layer 5	0.0	058	0.175	0.2	100	0.091	Layer 5	1.4	410	1.840	D	1.820		2.107
Layer 6	0.0	059	0.175				Layer 6	1.811		2.300	D			
EIT	R_{in} (m)	R_{out} (m)	$\pm z$ (m)	$\overline{R_{in}}$ (m)	R_{out} (m)	$\pm z$ (m)	ΕΟΤ	$\overline{R_{in}}$ (m)	R_{out} (m)	$\pm z$ (m)	Туре	R_{in} (m)	R_{out} (m)	$\pm z$ (m)
Disk 1	0.030	0.151	0.221	0.014	0.076	0.129	Disk 1	0.082	0.321	0.644	D	0.207	0.744	1.034
Disk 2	0.051	0.151	0.368	0.016	0.077	0.162	Disk 2	0.117	0.610	0.920	D	0.207	1.111	1.424
Disk 3				0.018	0.079	0.212	Disk 3	0.176	1.000	1.380	D	0.207	1.477	1.779
Disk 4				0.020	0.082	0.306	Disk 4	0.234	1.410	1.840	D	0.207	1.852	2.140
Disk 5				0.097	0.167	0.308	Disk 5	0.293	1.811	2.300	D			
Disk 6				0.121	0.167	0.792								
Disk 7				0.142	0.167	1.207								

Full Silicon Tracker Concept

Comparison with CEPC TPC Baseline Tracker

PFA calorimeter: active layer technologies

Silicon PIN diodes (1 × 1 cm² in 6 × 6 matrices) Scintillator tiles/strips (here 3 × 3 cm²) + SiPMs

CEDNU

CALICE collaboration

• Test beam experiments in 2006–2015 at DESY, CERN, FNAL

AHCAL/Si-ECAL: $\sim 10\,000$ readout channels DHCAL: \sim 500 000 readout channels

• Detector challenges:

- Compact design of calorimeters
- Calibration of all channels

• First physics prototypes of up to $\sim 1 \text{ m}^3$, $\sim 2 \text{ m}^3$ including Tail Catcher Muon Tracker

Dual Readout Calorimeter Based on the DREAM/RD52 collaboration

Dual readout (DR) calorimeter measures both: **Electromagnetic component Non-electromagnetic component**

Fluctuations in event-by-event calorimeter response affect the energy resolution le" energy losses

Méasure simultaneously:

Cherenkov light (sensitive to relativistic particles) Scintillator light (sensitive to total deposited energy)

Expected resolution:

EM: ~10%/sqrt(E) Hadronic: 30-40%/sqrt(E)

have been built

Superconductor solenoid development Updated design done for 3 Tesla field

Default: Iron Yoke

Lighter and more compact

Time Projection Chamber: Ion back flow

TPC readout with micro-pattern gaseous detectors (MPGDs)

Readout module (GEM+MM)

IBF: Ion Back Flow reduced to ~0.1%

Indication that TPC operation would be feasible at high-luminosity Z factory

720mm

Large TPC prototype

Ion backflow

Laser calibration system

Beam-induced backgrounds

Linear collider: Achieve high luminosities by using extremely small beam sizes

3 TeV CLIC: Bunch size: $\sigma_{x:y:z} = \{40 \text{ nm}; 1 \text{ nm}; 44 \mu\text{m}\} \rightarrow \text{beam-beam interactions}$

- Main Backgrounds ($p_T > 20$ MeV, $\theta > 7.3^{\circ}$)
- **Incoherent e+e- pairs:** 19k particles/bunch train at 3 TeV High occupancies
 - \rightarrow Impact on detector granularity

\rightarrow hadrons:

 17k particles/bunch train at 3 TeV Main background in calorimeters and trackers Impact on detector granularity and physics

Circular collider: same processes but to much low extent, plus synchrotron radiation

Synchrotron radiation in circular colliders (2)

Synchrotron radiation:

 E_{beam}^4 $M^4 imes r$

Property		FCC-ee
Beam energy (GeV)	45.6	80
Energy loss/turn (GeV)	0.03	0.33

High luminosities in circular colliders

Property	FCC-ee (100 km)			CEPC (100 km)			
Beam energy (GeV)	45.6	80	20	175	45.6	80	
Luminosity/IP (10 ³⁴ cm ⁻² s ⁻¹)	230	28	8.5	I.5	32	10	
Bunches/beam	16640	2000	393	48	12000	1524	2
Bunch separation (ns)	20	160	830	8300	25	260	6

Luminosity up to $\sim 10^{36}$ cm⁻²s⁻¹

Large number of bunches

Consequences for detector design

Crossing angle at IP Bunch separation impacts overall designs No power pulsing of detectors

Machine-detector interface (MDI) in circular colliders

High luminosities

Detector acceptance: > ± 150 mrad

Solenoid magnetic field limited: 2-3 Tesla

due to beam emittance blow up

Final focusing quadrupole (QD0) needs to be very close to IP $L^* = 2.2 \text{ m at FCC-ee and CEPC}$

Synchroton radiation in circular colliders: Shielding

Shielding added to prevent synchrotron radiation/secondary radiation to enter the detector

Cooling of beampipe needed \rightarrow increases material budget near the interaction point (IP)

FCC-ee

Central detector Luminometer OD0**HOM** absorber Pumps **SR** shielding

Higgs Couplings Measurement

Precision of Higgs couplings measurement compared to LC

 $\kappa_f = \frac{g(hff)}{g(hff; SM)}, \ \kappa_V = \frac{g(hVV)}{g(hVV; SM)}$

*K*_z ~ 0.2 %

ATL-PHYS-PUB-2014-016

Many BSM models impact Higgs couplings at percentage level CEPC will be sensitive to these

LHC not likely to be sensitive to these models even with full HL-LHC dataset

$C\overline{C}$	gg	WW	au au	ZZ	$\gamma\gamma$	ļ
-0.8	- 0.8	-0.2	+0.4	-0.5	+0.1	+
-0.2	-0.2	0.0	+9.8	0.0	+0.1	+
-0.2	-0.2	0.0	+7.8	0.0	0.0	+
-0.2	-0.2	0.0	-0.2	0.0	0.1	_(
-6.4	-6.4	-2.1	-6.4	-2.1	-2.1	_(
0.0	-6.1	-2.5	0.0	-2.5	-1.5	(
-4.6	-3.5	-1.5	-7.8	-1.5	-1.0	_′
- 1.5	+10.	-1.5	-1.5	-1.5	-1.0	-
-3.5	-3.5	-3.5	-3.5	-3.5	-3.5	-,

arXiv: 1710.07621

BSM Physics through Exotic Higgs Decays

General search for BSM

e⁺e⁻ collider better than HL-LHC for **MET+hadronic activity final states**

95% C.L. upper limit on selected Higgs Exotic Decay BR

	X 7

 $TT+ME_T$ (bb)(bb) (cc)(cc) (bb)(TT) (77)(77) $(jj)(\gamma\gamma)$ (YY)(YY)(jj)(jj)

Z. Liu, H. Zhang, LT Wang, 1612.09284

Electroweak observables at CEPC

Expect to have >10¹¹ Z boson for electroweak precision physics

Observable	LEP precision	CEPC precision	CEPC runs	CEPC $\int \mathcal{L} dt$
m_Z	2.1 MeV	0.5 MeV	Z pole	8 ab^{-1}
Γ_Z	2.3 MeV	0.5 MeV	Z pole	8 ab^{-1}
$A^{0,b}_{FB}$	0.0016	0.0001	Z pole	8 ab^{-1}
$A^{0,\mu}_{FB}$	0.0013	0.00005	Z pole	8 ab^{-1}
$A^{0,e}_{FB}$	0.0025	0.00008	Z pole	8 ab^{-1}
$\sin^2 heta_W^{ ext{eff}}$	0.00016	0.00001	Z pole	8 ab^{-1}
R_b^0	0.00066	0.00004	Z pole	8 ab^{-1}
R^0_μ	0.025	0.002	Z pole	8 ab^{-1}
m_W	33 MeV	1 MeV	WW threshold	2.6 ab^{-1}
m_W	33 MeV	2–3 MeV	ZH run	5.6 ab^{-1}
$N_{ u}$	1.7%	0.05%	ZH run	5.6 ab^{-1}

Funding Support for Detector R&D

Multiple funding sources

Detector Silicon TPC Calorimeter Magnet **Total**

Ministery of Sciences and Technology (MOST) **National Science Foundation of China**

- Major project funds
- Individual funds

Industry cooperation funds **IHEP Seed Funding** Others

Funding (M RMB)
18.2
7.0
21.3
8.7
55.2

Currently secured funding

63

Cost of project

Cross sections: pp versus e+e-

In pp collisions interesting events need to be extracted from underneath a huge number of **background** events

> In ee collisions **S/B** ~ 10⁻³

S/B ~ 10⁻¹⁰

Generic detector requirements for high-energy e⁺e⁻ colliders

Precision measurements

Require excellent momentum resolution and flavor tagging Low-mass vertex and tracking detectors, high granularity **Require excellent energy resolution**

Employ excellent calorimeters (particle flow, dual readout)

Subsystem Vertex detector Tracking detector ECAL: electromagnetic calorimeter HCAL: hadronic calorimeter Magnet system Muon system Hermicity Luminosity detectors

No major concerns about radiation hardness, unless for very forward detectors and inner most layer of vertex detector

Complementary subsystems

Measurement vertex position

impact parameter \rightarrow helps determine flavor track momenta of charged particles track momenta of charged particles energy of γ , e[±] and hadrons energy of hadrons (including neutrals) bend charged particles \rightarrow momentum measurement identify muons missing energy (e.g. v) luminosity

