SPPC Status and HFM R&D Progress

Jingyu Tang, Qingjin Xu for the SPPC study group

International Workshop on CEPC, Nov. 12-14, 2018, IHEP

Outline

- SPPC chapter in the CDR
- Ongoing efforts in accelerator physics
- High-field magnet R&D progress
- Funding for the study
- Summary

SPPC Chapter in the CEPC CDR

• The SPPC design is included in the CDR as a single chapter of Vol.1 (Accelerator), and the HFM R&D as a section in the CEPC R&D efforts chapter.

8	SPPC		302		
8.1	INTRODUCTIO	N	302		
	8.1.1 Science	Reach of the SPPC			
	8.1.2 The SPI	PC Complex and Design Goals			
	8.1.3 Overvie	ew of the SPPC Design			
	8.1.4 Compat	tibility with CEPC and Other Physics Prospects			
	8.1.5 Referen	ices			
8.2	KEY ACCELER	RATOR ISSUES AND DESIGN			
	8.2.1 Main Pa	arameters			
	8.2.1.1	Collision Energy and Layout	306		
	8.2.1.2	Luminosity	308		
	8.2.1.3	Bunch Structure and Population	309		
	8.2.1.4	Beam Size at the IPs	309		
	8.2.1.5	Crossing Angle	310		
	8.2.1.6	Turnaround Time	310		
	8.2.2 Key Ac	celerator Physics Issues	310		
	8.2.2.1	Synchrotron Radiation	310		
	8.2.2.2	Intra-beam Scattering	311		
	8.2.2.3	Beam-beam Effects	311		
	8.2.2.4	Electron Cloud Effect	311		
	8.2.2.5	Beam Loss and Collimation	312		
	8.2.3 Preliminary Lattice Design				
	8.2.3.1	General Layout and Lattice Consideration	312		
	8.2.3.2	Arcs	312		
	8.2.3.3	Dispersion Suppressor	313		
	8.2.3.4	High Luminosity Insertions	313		

	8.2.3.5 Dynamic Aperture					
	8.2.4 Lumino	sity and Leveling				
	8.2.5 Collima	tion Design	315			
	8.2.6 Cryoger	nic Vacuum and Beam Screen				
	8.2.6.1	Vасиит	317			
		8.2.6.1.1 Insulation Vacuum				
		8.2.6.1.2 Vacuum in Cold Sections				
		8.2.6.1.3 Vacuum in Warm Sections				
	8.2.6.2	Beam Screen	318			
	8.2.7 Other T	echnical Challenges				
	8.2.8 Referen	ces				
8.3	HIGH-FIELD S	UPERCONDUCTING MAGNET				
	8.3.1 Concept	tual Design Study of 12-T Iron-based HTS Dipole Magnet				
	8.3.2 Concept	tual Design Study of 20-T Hybrid Dipole Magnet				
	8.3.3 Challen	ges for Fabrication and R&D Steps				
	8.3.4 Referen	ces				
8.4	INJECTOR CHA	AIN				
	8.4.1 General	Design Considerations				
	8.4.2 Prelimin	nary Design Concepts				
	8.4.2.1	Linac (p-Linac)	332			
	8.4.2.2	Rapid Cycling Synchrotron (p-RCS)	332			
	8.4.2.3	Medium Stage Synchrotron (MSS)	332			
	8.4.2.4	Super Synchrotron (SS)	333			
	8.4.2.5	References	333			

11.16 SUPERCONDU	CTING MAGNE	TS FOR SPPC	
11.16.1	Subscale Ma	gnet R&D with Nb₃Sn Technology	
11.16.1	.1 Ma	agnetic Design	
11.16.1	.2 Me	echanical Design	
	11.16.1.2.1	Coil Stress and Coil Displacement	
	11.16.1.2.2	Cold Shrinking Force	425
11.16.1	.3 Fa	brication of the Subscale Magnet	426
	11.16.1.3.1	Cabling	426
	11.16.1.3.2	Coil Winding	
	11.16.1.3.3	Heat Treatment	427
	11.16.1.3.4	NbTi/Nb3Sn Splices	427
	11.16.1.3.5	Vacuum Pressure Impregnation (VPI)	
	11.16.1.3.6	Magnet Assembly	429
11.16.2	Subscale Ma	gnet R&D with Hybrid (Nb3Sn & HTS)	Technology
11.16.3	References		

SPPC main parameters (since 2017.5)

Parameter	Unit		Value	
		PreCDR	CDR	Ultimate
Circumference	km	54.4	100	100
C.M. energy	TeV	70.6	75	125-150
Dipole field	Т	20	12	20-24
Injection energy	TeV	2.1	2.1	4.2
Number of IPs		2	2	2
Nominal luminosity per IP	cm ⁻² s ⁻¹	1.2e35	1.0e35	-
Beta function at collision	m	0.75	0.75	-
Circulating beam current	А	1.0	0.7	-
Bunch separation	ns	25	25	-
Bunch population		2.0e11	1.5e11	-
SR power per beam	MW	2.1	1.1	-
SR heat load per aperture @arc	W/m	45	13	-

Ongoing SPPC Study

- As SPPC is a long-term project and due to very limited resources, no need to carry out engineering-related studies and only those with typical challenges in design and long-term R&D are picked up for study.
 - Describing what a future proton-proton collider looks like, physics performance
 - Following the CEPC project, try to avoid what will hinder the future upgrading to SPPC, e.g. tunnel circumference and layout
 - Studying key accelerator physics issues of that scale accelerators, which is also a contribution to the accelerator community, e.g. collimation, beam-beam effects
 - Identifying key technical challenges, for some of them needing long-term R&D efforts, we should start them as early as possible, e.g. high-field superconducting magnets, beam screen

Accelerator Physics

- Since beginning 2018, man power on accelerator physics has reduced significantly. Due to short of funding, collaborative institutions almost stopped activities on SPPC, and now the main force relies on several IHEP PhD students. Monthly meeting paused.
- Still active:
 - Lattice design and dynamic aperture
 - Beam collimation
 - Beam-beam effects and luminosity
 - Long beam dynamics
 - Some selective topics on the injector chain

Details in the SPPC parallel session (Tue. Morning) 7

R&D progress on high-field SC magnets

- High-field superconducting magnets are key technical challenges for future p-p colliders, but there is a hope to solve the technical and too-costly problem in the next 15 years.
- SPPC design scope
 - Phase I: 12 T, all-HTS (iron-based conductors)
 - Phase II: 20-24 T, all-HTS
- Thanks to good financial support, these R&D efforts have gone quite well, and are supported by a good collaboration

SPPC Magnet Design Scope

Baseline design

- Tunnel circumference: 100 km
- Dipole magnet field: 12 T, iron-based HTS technology (IBS)
- Center of Mass energy: >70 TeV
- Injector chain: 2.1 TeV

Upgrading phase

Dipole magnet field: 20 -24T, IBS technology

- Center of Mass energy: >125 TeV
- Injector chain: 4.2 TeV (adding a high-energy booster ring in the main tunnel in the place of the electron ring and booster)

Development of high-field superconducting magnet technology

- Starting to develop HTS magnet technology before applicable IBS wire is available
- ReBCO & Bi-2212 and LTS wires be used for model magnet studies and as options for SPPC: stress management, quench protection, field quality control and fabrication methods

Top priority: reducing cost! Instead of increasing field

Make IBS the High-T_c and High-Field "NbTi" superconductor in 10 years!

J_{e} of IBS: 2016-2025

Domestic Collaboration for HTS R&D

"Applied High Temperature Superconductor Collaboration (AHTSC)" formed in Oct. 2016.

Including 18 institutions and companies in China. Regular meeting every 3 > Goal : months.

- a) 1) To increase the J_c of iron-based superconductor (IBS) by 10 times, reduce the cost to 20 Rmb/kAm @ 12T & 4.2K, and realize the industrialization of the conductor;
- b) 2) To reduce the cost of **ReBCO and Bi-2212** conductors to 20 Rmb/kAm @ 12T & 4.2K;
- c) 3) Realization and Industrialization of IBS magnets and SRF cavities.
- Working groups: 1) Fundamental sciences study; 2) IBS conductor R&D; 3) ReBCO conductor R&D; 4) Bi-2212 conductor R&D; 5) Performance evaluation; 6) Magnet and SRF technology.

Progress on IBS wires

Supercond. Sci. Technol. 31 (2018) 015017

Y. Ma (IEECAS) et al.

10 12 14 16

Distance (X5m)

18 20 22

8

6

IEEE TAS 27 (2017) 7300705

The 12-T Fe-based Dipole Magnet

The 1st High Field Dipole LPF1: NbTi+Nb₃Sn

Cross section of LPF1

Magnetic field distribution

Fabrication of the 1st model dipole magnet (NbTi+Nb₃Sn)

Assembly

Test results of the 1st high-field dipole magnet in China Feb. 2018

The 2nd High Field Dipole LPF2: Nb₃Sn with IBS

Cross section of LPF2

Fig. 1: The cross section of the 12-T common-coil dipole (with inserted iron-based coil)

Magnetic field distribution

2 new Nb_3Sn coils + 1 IBS coils

Test stopped due to problems of joints? (to be verified)

Fabrication of IBS coils.

Next step 1: 15T twin-aperture dipole @ 4.2K

Coil configuration	ı in the	1st quadrant
--------------------	----------	--------------

Windings	$B_{\rm max}({\rm T})$	Loadline(%)
IHEPW7	15.281	89.427
IHEPW8 A	13.001	88.384
IHEPW8 B	12.844	87.535
IHEPW9 A	12.444	88.666
IHEPW9 B	12.612	89.574
IHEPW10 A	12.470	88.806
IHEPW10 B	12.028	86.417

 I_{op} = 8800A with 10% Safety Margin

trand	diam.	cu/sc	RRR	Tref(K)	Bref(T)	Jc@ BrTr	dJc/dB	Ic@ BrTr(A)
IHEP WCJC	0.802	1	200	4.2	14	1800	400	454.65
				4.2	15	1400	350	353.61
	1.2	1.2 1 20	200	4.2	14	1800	400	1017
			200	4.2	15	1400	350	791

Next step 2: 12T twin-aperture dipole @ 4.2K with 10⁻⁴ field quality

Field quality analysis

Rref	b3	b5	b7	b9	a2	a4	a6	a8
15 mm	-0.06	0.06	2.31	2.84	- 0.004	0.43	1.88	2.53
13 mm	-0.05	0.03	0.98	0.9	- 0.004	0.28	0.92	0.93

3D model (half length of the straight section: 500 mm)

CERN

CERN & China Collaboration

4.0

3.0

China will provide 12 units CCT corrector magnets for HL-LHC before 2022 A 0.5m model and 2.2m prototype to be fabricated and tested by June 2019

Fabrication and test of the 1st coil for the 0.5m model magnet @

More collaboration in future is expected between CERN and Chinal

Funding for the SPPC study

- On accelerator physics
 - NSFC general (since 2015): general design
 - A new NSFC youth: lattice and beam dynamics
- On HF Magnets
 - CAS Strategic Priority Research Program
 - CAS Key Research Program
 - CAS Hundred Talents Program
 - NSFC general

International collaboration

- Modest international collaboration continues:
 - With LAL and CERN, beam collimation
 - With KEK and Fermilab, beam-beam effects
 - With CERN, high-field superconducting magnets

Summary

- One SPPC chapter and one HFM R&D section in the CEPC CDR report
- Low-level efforts on the SPPC accelerator physics continue
- R&D efforts on high-field magnets are well supported and result in good progress

THANK YOU FOR ATTENTION!

Compatibility between CEPC and SPPC

- CEPC first to be built, with potential to add SPPC later
- Three machines in one tunnel: e booster, ee double-ring collider, pp double-ring collider
- Allow ep collision in the future, to solve the problem in circumference difference (CEPC outside of SPPC)
- Layout: 8 long straights and arcs, LHC-like DS lattice, lengths for LSSs
- Several rounds of interactions between CEPC and SPPC design teams, tbc

Injector chain (for proton beam)

MSS: Medium-Stage Synchrotron

SS: Super Synchrotron

Ion beams have dedicated linac (I-Linac) and RCS (I-RCS)

Major parameters for the injector chain

	Value	Unit		Value	Unit
p-Linac			MSS		
Energy	1.2	GeV	Energy	180	GeV
Average current	1.4	mA	Average current	20	uA
Length	~300	m	Circumference	3500	m
RF frequency	325/650	MHz	RF frequency	40	MHz
Repetition rate	50	Hz	Repetition rate	0.5	Hz
Beam power	1.6	MW	Beam power	3.7	MW
p-RCS			SS		
Energy	10	GeV	Energy	2.1	TeV
Average current	0.34	mA	Accum. protons	1.0E14	
Circumference	970	m	Circumference	7200	m
RF frequency	36-40	MHz	RF frequency	200	MHz
Repetition rate	25	Hz	Repetition period	30	S
Beam power	3.4	MW	Protons per bunch	1.5E11	
			Dipole field	8.3	Т