Bill Murray Warwick University / RAL, STFC bill.murray@cern.ch

IHEP 14th November 2018 Vertex detectors Tracker Calorimetry

C de le ctor

Disclaimer

These are my personal views and not those of Warwick University, STFC, UK Research and Innovation or any other body

I have tried to summarize what I can from this exciting workshop, but there is too much to even follow
 This is really a good sign

A thousand apologies if I missed your/your favourite work

Mistakes are all mine

WARWICK

Planning accelerators

- John Adams LEP planning, Les Houches 1979 LEP turned on in 89! As predicted But LHC: In mid 1980s LHC was 17TeV machine, 10³³cm⁻²s⁻¹ 10³⁴ was `high-lumi' option in 1987
 - Turn on 1998

WARWICK

Running scenario

Opera- tion mode	√s (GeV)	L per IP 10 ³⁴ cm ⁻² s ⁻¹	Years	Total ∫L ab⁻¹,2 IPs	Event yields
н	240	3	7	5.6	1x10 ⁶ +3x10 ⁸ qq
Z	91.2	32	2	16	7x10 ¹¹
WW	158-172	10	1	2.6	2x10 ⁷

Running at ZH gives O(20M) events / year / IP

- But the Z peak yields 30,000M, 1000 times more
- Z running stresses DAQ/storage, space charge, Radiation. 30KHz Z's
- Tracking precision (momentum & d₀ resolution)
 requirements are toughest for Higgs physics
 Numbers aboove assume 2T field for Z run

WARWICK

Cross-sections

Running at 240 GeV maximises ZH • But qq σ is 300 times larger than ZH Removing background requires good detector performance • Of course, s/b is about 107 times better than LHC •Presumably all $ee \rightarrow qq$ will be kept

Its only 0.1% of the Z data!

WARWICK

Detector concepts

In an ideal world requirements would come first...but...

CepC detectors

Three concepts in CDR:

Two Leaning heavily on ILC work

- SiD & ILD adapted for lower energy
- Both with 3T solenoids
- Thinner HCAL, lower granularity
- Concern about the TPC charge buildup at Z luminosity
- But TPC would offer 3σ p-K separation...possible B phys?
- 10µs readout for silicon vtx, 30KHz Z's \rightarrow triggerless?
- Power load in silicon major concern. Material may suffer
- IDEA: wirechamber, 2T solenoid, calorimeter outside
 - 90% He wirechamber...(Kloe/MEG++) 10% occupancy?
 - DREAM dual-readout
 - Solenoid upgrade with HTS for 30% thinner coil?

WARWICK

Baseline design

- Son of ILD
 3T 3m radius solenoid
 Containing:
 Si Vertex detector
 - TPC
 - 1.8m radius
 - Silicon External Tracker
 - Si-W ECAL
 - HCAL
- Return yoke outside
 - Including muon system

WARWICK

Full Silicon Tracker

- Much like concept I
 But with all-silicon tracker
 - Lacks dE/dx particle ID
 - Higher material budget
- But stable, rate capable.
 Daughter of SID

Science & Technology Facilities Council Rutherford Appleton Laboratory

W. Murray 10

WARWICK

IDEA: 2nd Detector concept

WARWICK

Detector Requirements

			122

Tracker specification

$$\sigma(1/p_T) = 2.10^{-5} \oplus \frac{10^{-3}}{p_T \sin \theta}$$
$$\sigma(d_0) = 5 \oplus \frac{10}{p \sin^{3/2} \theta} \mu m$$

Aiming for an order of magnitude better than LHC

 Table 1. Design parameters of the CEPC vertex system.

	R(mm)	Z (mm)	$\sigma(\mu m)$	material budget
Layer 1	16	62.5	2.8	0.15%/X0
Layer 2	18	62.5	6	0.15%/X ₀
Layer 3	37	125.0	4	0.15%/X ₀
Layer 4	39	125.0	4	0.15%/X0
Layer 5	58	125.0	4	0.15%/X ₀
Layer 6	60	125.0	4	0.15%/X ₀

WARWICK

Impact parameter resolution

- High p spec is exceeded
 But at low p is only just reached
 - Trackers have a history of underestimating material at CDR
- Consider 3 scenarios:

	Aggressive	Nominal	Conservative
Material per layer, X0	0.075	0.15	0.3
Resolution, µm	1.4-3	2.8-6	5-10.7
Radius, mm	8	16	23
$H \rightarrow bb \epsilon^*P$	0.925	0.914	0.900
$H \rightarrow cc \epsilon^* P$	0.133	0.095	0.078

Science & Technology Facilities Council Rutherford Appleton Laboratory

W. Murray 14

WARWICK

Pixel developments

- Very active research area
 ILC solutions use time structure to save power
 Adaption to CepC needed
 Alpide chip (ALICE) is close to spec already
 CMOS has great potential for easy assembly
 - ARCADIA process in INFN aims for demonstration in 2020

WARWICK

Pixel resolution

DSOI FPIX2 detector 8µm² Beam test at Fermilab Telescope 5 FPIX2 plus SOFIST (20 µm²)

Resolution of 0.68µm is world record

WARWICK

Example CepC CMOS: MIC4

MIC4 25µm² pixel, high-speed integrated link
 Front end from ALPIDE

Duration < 3µs

Low and uniform noise

SOI developments (CPV2) also very promising
 Resolution below 3um demonstrated

WARWICK

Vertex detector status

A challenging detector

But with much active work

Existing technology is close to providing solutions

TPC status

Radius: 0.3m to 1.8m Length: 4.7m Electrons drift to MPGD's 30µs drift time Same as (Z rate)⁻¹ 220 space points 3T field suppresses diffusion 100µm resolution Laser alignment 1% X0 in central region 10% in endcaps (including cabling)

WARWICK

Distortion from ion backflow

Gas gain in GEM leaves ions
Drift back to cathode 5µm/µs
Each event produces a disc of ions

Which deflect electrons
 40µm distortion @ 3 10³⁴
 c/f 100

All silicon tracker

Can replace TPC with a silicon strip detector FST has 6 double strip layers 5-7% X0 estimated 150µm wafers, 50µm pitch •Yields $H \rightarrow \mu\mu$ mass resolution 0.21GeV 16% better than baseline

WARWICK

IDEA Wirechamber

Ξ

Radius 0.35 – 2.0 m (2m/1.8m)² compensates (2T/3T) field: 82% 112 layers, stereo 56,448 drift cells 20% occupancy in 100 track $ZH \rightarrow qqqqqq$ 1.6% X_o barrel, 5% forward Similar to MEG 2, below

dE/dx

Energy loss for particle ID Measured charge comparable in drift chamber and TPC Drift chamber offers cluster counting too Separate π/K by 2.5 σ up to 30 GeV Better with cluster counting No available in FST

WARWICK

K⁰_s reconstruction

Charged particle π/K ID O(2 σ) to 30 GeV Neutral Kaon/Lambda performance important • e.g. for K⁰ in Z decay Mass resolution is 0.29% Will give cleaner Kaon ID than dE/dx Though with lower efficiency A mass resolution 0.046% Kinematic assistance from proton mass

Jet Resolution

Particle flow and DREAM:

- Alternative philosophies of jet energy measurement
- Confucianism v Taoism
 - Ipractise Confucianism on the outside, Taoism on the inside."

Jet energy resolution

In August, I did not feel extreme JER was needed At LEP, constraints from Energy Resolution 0.065 0.06 0.055 0.07 (E, p) conservation **CEPC CDR** $ZZ \rightarrow vvq\overline{q}$ improved JER hugely b quarks We studied: ▲ c quarks $Z \rightarrow qq (4C)$ uds guarks <u>25.7%</u> ⊕ 2.4% Jet • $ee \rightarrow WW \rightarrow qqqq (4C)$ 0.05 • ee \rightarrow WW \rightarrow qqlv (1C) 0.045 ee→WW→lvlv (no jet) •But CPC has $ee \rightarrow ZH$ 0.04 Recoil mass to Z critical 0.035

20

40

60

80

100

E [GeV]

- $Z \rightarrow II$ looks pretty
- $Z \rightarrow qq$ has the statistics

WARWICK

Jet energy resolution

Key physics from identifying H from Z recoil mass
 Kinematics gives tails to high mass, alas
 Visually clear that O(4%) represents a transition in performance

Science & Technology Facilities Council Rutherford Appleton Laboratory

W. Murray 27

THE UNIVERSITY WAR

Separate $H \rightarrow WW$ from $H \rightarrow ZZ$

Four jets, find best match pair Jet-pair masses Bottom right is average jet mass Bottom compares perfect jet resolution with fullsim Radiation/jet finding dominate over resolution x axis is angular Inclusive, GenJet 0.9 match Inclusive, RecoJet 0.8 0.7 category 0.6 Y axis is 0.5

WARWICK

Si-W Calorimeter segmentation

ECAL: Si-W

ILC & CMS prootyping
MIP signal, s/n~20
CepC specific optimisations
Active cooling R&D ongoing

WARWICK

Scintillator / Tungsten

Scintillator tile with SiPM option
Detector geometry optimised
Position/energy resolution OK
Single layer prototype tested with cosmics

AHCAL

•8M channels \rightarrow make @ 1Hz

- SiPM's readout continuously → cooling
- 3cm² tile design gives uniformity
 Custom machine for tile wrapping

AHCAL prototype

Results in CALICE-CMS testbeam
21888 channels

99.96% working

Beam test distinguishes muons, electrons and pions

WARWICK

CepC specific HCAL

Digital and analogue solutions both under study

Chinese NDL SiPM's giving good performance

Semi-digital HCAL

- Prototype at CERN testbeam
 - As Calice
- Linearity good, resolution meets needs
- Moving to 3m² prototype
 Cooling 110kW being studied

Z (cm)

Science & Technology Facilities Council Rutherford Appleton Laboratory

W. Murray 35

WARWICK

Optimizing p-flow calorimetry

 Plot shows BMR varying HCAL layer & B field
 Reducing SDHCAL below 40 layers impacts jet energy resolution
 Reducing B field has minor impact on jet resolution

WARWICK

Dream Calorimetry

Shower fluctuations change e/ π component fraction
Fibre readout, alternately:
Scintillator – all charged
Clear – fast cerenkov only (e)

 Weighted <u>difference</u> between two signals yields compensated result
 Event by event measure of EM fraction

The Dream

Dream readout:

- Brass calorimeter with fibres embedded
 Lead would be better
- SiPM allows easy fibre routing

WARWICK

The real world?

Testbeam at CERN

- Few days
- Analysis just started

Signals in the RD52 calorimeter:

response not yet equalized

 Clear and distinct signals from all particle types
 Verified with independent PID

WARWICK

Calorimetry summary

Active programme Lots of ideas and real work going on

New calorimeter ideas

performance is not great

Can consider segmented crystal calorimeter

- Need development of SiPM
- Could improve Z lumi through $ee \rightarrow \gamma\gamma$

WARWICK

Recall requirements

Momentum resolution

- Defines Z → µµ peak performance, s/b
 Clearly excellent is good
- But lacks a perfect benchmark to define it
- H→µµ provides some justification
- Photon resolution
 - $H \rightarrow \gamma \gamma$ provides weak justification
 - More driven by Brehm recovery or single photon?

«Tau ID?

Basically follows the rest of the performance

Tau performance

Separation of H → TT from H → WW in lepton pairs:
 i.e. T+T v e/µ/T + e/µ/T
 Log sum d0 and z0 significance in 2D:

Science & Technology Facilities Council Rutherford Appleton Laboratory

W. Murray 43

WARWICK

The challenge of crossing angle

2x16.5mRad angle

- Needed to separate beams

 Crab waist crossing

 Increases impact of experiment solenoids
 - on emittance
- The green antisolenoids introduced to reduce impact
- Event so, a 3T solenoid implies a 50% reduction in luminosity at Z peak

Running at Z peak

Should we assume detector unchanged for 10 yrs?
 If Z run comes after ZH, as planned, can:

- Build up DAQ facilities gradually
 - Initial demands much easier
- Potentially change vertex region if helpful
- But: should make test run at Z peak at high lumi
 - Machine is designed to be flexible
 - Helpful to calibrate detectors
 - Ensure detectors can cope with rate
- If there is an issue, there are 6 years to find solutions
 However:

Detector requirements more stringent at ZH
 This needs to be gone through carefully

WARWICK

Magnetic field for Z run?

Tension:

- TPC needs B>3T to limit diffusion
- IDEA design calls for thin coil, so B<2T
- Factor 2 luminosity gain at Z peak from lower field
- Can baseline with reduced field?
 - Reduce bending power
 - Degrade TPC position resolution
 - But does Z physics lose that much?
 - EW depends more on systematics
 - B physics programme would certainly suffer
 - TPC gives dE/dx: required largely in B physics

Summary

This project is timely, achievable and realistic
Vertex detector has active R&D programme
TPC & Drift chamber well advanced
Many initiatives in calorimetry
I skipped Muons, DAQ, solenoids...sorry.
R&D on some of the critical components ongoing
Still room for new ideas

The detectors can do the job

- Need to move from CDR to TDR
 - A lot of work hidden in this line
- TO deliver a unique physics programme

WARWICK

Jet pair mass resolution

Delphes simulation using the tracker to reconstruct µ momentum Performance appears comparable to the p-flow approach

WARWICK

Pixelated strip for SIT/FTD?

Alternative studied in Shandong

Operation mode	H (240)	W (160)	Z (91)
Track multiplicity (BX-1)	310	300	32
Bunching spacing (ns)	680	210	25
SIT-L1 occupancy (%)	0.19	0.58	0.52
FTD-D1 occupancy (%)	0.17	0.54	0.48

Challenge in silicon strips

Strips are seen as less challenging

- Therefore less interesting to make!
- But the area is large especially for the all-silicon device.
 - A strong set of groups dedicated to them is needed