Rb measurement at CEPC MC Level

Bo Li, Yantai University

Introduction

R_b : the relative decay width of Z into b quarks

$$(R_b = \Gamma_{b\bar{b}}/\Gamma_{had})$$

Method: Double tagging method

- function1: The ratio of one jet tagged as b jet
- function2 The ratio of both jets tagged as b jets
- By using these two functions, we can got the two variables R_b and ϵ_b

Get						R_c	$\mathcal{E}_{c},$	Ende
From	N						с,	cuus
Mixed	N _t		. (4	л	D)	c_b ,	L_{c} ,	Cuds

Procedure

Improvement

Make sure the two jets are from Z ->bb

- The R_{uds} , R_c , ε_{uds} , ε_c , C_b , C_c , C_{uds} are gotten from MC samples
- The N_t , N_{tt} , N_{had} are gotten from DATA samples

B-tagging performance
1. Produced from FSClasser with command : "Marlin *.xml"
2. The Z boson hadronic events root file:

Double_tJetMcPyP1;Including the final particle informationDouble_tJetMcPzP1;Such as the lepton Pt, jet Pt, jet tagDouble_tJetMcEnP1;Such as the lepton Pt, jet Pt, jet tagDouble_tJetAngleRecMcprobDouble_tJetVtxRP2;Double_tJetVtxSigRP2;Double_tJetVtxSigZP2;Double_tJetBtagP2;Double_tJetEtagP2;	Double_t Double_t Double_t Double_t Double_t Double_t Double_t Double_t Double_t Double_t Double_t	t JetMcPxPl; t JetMcPyP1; t JetMcPzP1; t JetMcEnP1; t JetAngleRecMo t JetVtxRP2; t JetVtxSigRP2; t JetVtxSigZP2; t JetBtagP2; t JetCtagP2;	Including the final particle information Such as the lepton Pt, jet Pt, jet tag prob ~140,000 events are produced
---	--	---	--

Efficiency for Zbb, and rejection for Zcc, Zll

The Z hadronic '**DATA**' is mixed by MC samples: Zbb **sample1**, Zcc **sample1**, Zll **sample1** We set Rb=0.3, Rb=0.5, Rb=0.7 as the Input Rb to mix the 'DATA'

The R_c , ε_c , C_b , C_c , C_{uds} is gotten by MC samples: Zbb sample2, Zcc sample2, Zllsample2

So if **sample1** sample2, which means the MC R_c , ε_c , C_b , C_c , C_{uds} are different from the Truth in 'DATA'

Input Rb=0.3, six BtagProb work point: Prob>0.6, >0.7, >0.8, >0.9, >0.95, >0.99

Jet1 cosθ

Jet2_cos0^{-0.4}-0.6

Angle_jet1vsjet2

To further improve the b-tagging correlation factor, two different btagging method are used instead of two b-tagging work points in one b-tagging method

 $\frac{N_t}{N_{had}} = R_b \varepsilon^l_b + R_c \varepsilon^l_c + (1 - R_b - R_c) \varepsilon^l_{uds} \quad \text{jet1 Btag work point}$ $\frac{N_t}{N_{had}} = R_b \varepsilon_b^{J} + R_c \varepsilon_c^{J} + (1 - R_b - R_c) \varepsilon_{uds}^{J}$ jet2 Btag work point $\frac{N_{tt}}{N} = C_b R_b \varepsilon^{l}{}_b \varepsilon^{l}{}_b + C_c R_c \varepsilon^{l}{}_c \varepsilon^{l}{}_c + C_{uds} (1 - R_b - R_c) \varepsilon^{l}{}_{uds} \varepsilon^{l}{}_{uds}$

- The BtagProb distribution are different for Zbb, Zcc and Zll, which can allow us tagging the bjet with high efficiency, as well as high rejection for c and light jets.
- BtagProb Work Points are used :
 - The BtagProb>0.6, BtagProb>0.7, BtagProb>0.8, BtagProb>0.9, BtagProb>0.95, BtagProb>0.99

Input Rb=0.5, six BtagProb work point: Prob>0.6, >0.7, >0.8, >0.9,>0.95,>0.99

Input Rb=0.7, six BtagProb work point: Prob>0.6, >0.7, >0.8, >0.9,>0.95,>0.99

jet1: the same b-tagging method as before. jet2: using the deltaR between the muon and jet

To get the R_b accurately, the correlation factor C_b should be expected to 1

The I/O test shows the procedure works well

studied accurately