

Institute of High Energy Physics Chinese Academy of Sciences

Sha Bai¹, Ke Li^{1,2*}, Xinchou Lou¹, Michael Sullivan², Charlie Young², Hongbo Zhu¹

1, Institute of High Energy Physics, China

2, SLAC National Accelerator Laboratory, U.S.A

* email: like@ihep.ac.cn

Numbers of incident photons and deposit powers at different beampipe surfaces.

Beampipe Deposit Number of position (m) incident Photons power (W) nor hunch

Extension line should be far way Central from central beampipe, so the most favored scattered photon can Beampipe not hit central beampipe. (<u>+</u>7 cm from IP) Beam along Z direction

			On-axis injection	Linac
	Higgs	W^+W^-	Z(3T)	Z(2T)
Number of IPs			2	
Beam energy(GeV)	120	80	4	5.5
Luminosity $(10^{34} cm^{-2} s^{-1})$	3	10		17
Years	7	1		2
Number of bunches	242	1524	12	2000
Beam current (mA)	17.4	87.9	46	61.0
Synchrotron radiation power (MW)	30	30	1	6.5
eta_x^*/eta_y^* (m)	0.36/0.0015	0.36/0.0015	0.2/0.0015	0.2/0.001
Emittance x/y (m)	1.21/0.0024	0.54/0.0016	0.18/0.004	0.18/0.0016

Challenge from Machine-Detector Interface (MDI)

MDI parameters in simulation

To suppress SR,

• Last bend magnet: relatively soft, 93m long $(\rho = 8 \times 10^4 \text{m}), \sim 67 \text{m}$ away from IP,

0.7-2.218.844.28e+092.2-4.24.389.50e+084.2-4.4352.561.20e+104.43-5.914.199.55e+08			
2.2-4.24.389.50e+084.2-4.4352.561.20e+104.43-5.914.199.55e+08	0.7-2.2	18.84	4.28e+09
4.2-4.4352.561.20e+104.43-5.914.199.55e+08	2.2-4.2	4.38	9.50e+08
4.43-5.91 4.19 9.55e+08	4.2-4.43	52.56	1.20e+10
	4.43-5.91	4.19	9.55e+08

Incident photon can not hit the central beampipe (\pm 7cm) directly. But could hit the Cu beampipe and scatter to central beampipe.

The position distribution of the source of scattered photons which will hit central beampipe.

All of the scattered photons come from the beampipe at 0.7-4.2 m (dominant by beampipe at 0.7-2.2m).

SR from quadrupole (QF1, QD0)

Critical SR energy: ~45 keV

Beampipe around

Lumical	(0.7-2.2m)	MDI parameters	Values
/ hoamnin		<i>L</i> * (m)	2.2
	beam	Crossing angle (mrad)	33
		Strength of QD0 (T/m)	150
		Strength of detector solenoid (T)	3.0
	Lumical	Strength of anti-solenoid (T)	7.0

Implementation of beampipe:

3mm thick Copper. Divided into 7500 parts in Mokka format. Each part is a cone with length of 0.2mm

Simulation:

- Bdsim + Geant4
- Only use e^+ beam (e^- beam is the same)
- No secondary particles from

the interaction between photon and beampipe

Protection from SR

In total, 4×10^4 scatterd photons at central beampipe per bunch. The source is the beampipe at 0.7-4.2 m.

To study the protection, first we need more statistics.

- Modify the code of Bdsim and Geant4 to generate the SR photon at specific region: beampipe 0.7-4.2m.
- Generate a small sample of SR photons first.
- Take the energy, momenta and positions distributions (6 variables).
- Then generate a larger toy MC, enlarged by 1000 times.
- Use Geant4 to simulate the interaction between these photons and beampipe.
- In total statistics: 3 bunches.
- Time: ~one week (300CPU, generation+interaction +analysis)
- Disk space: 50 TB.

beampipe.

Z (m)

The source positions are out of beam stay clear region. So the impact of quadrupole is negligible.

Coating the central beampipe

To further absorb the scattered photon, we can coat the inner surface of central beampipe with Au. Use the energy spectrum, the thickness to absorb 1/e photons is 7.2 μ m

Beam halo

The beam halo is simulated with same parameter of beam core but the size is enlarged by 3 times and the fraction in total beam is assumed to be 1.35%. The halo is included in the final result.

Summary and future plan

SR from last bend magnet

Z direction: e^+ beam. Each photon is represented by a line and scaled by energy. Current statistics 0.001 bunch.

SR photons distribution with more statistics

- To protect central beampipe from the scattered photons, we introduce three mask tips at $Z = \pm (4.2, 1.93 \text{ and } 1.51) \text{ m}$ (yellow box in above figure) Define the beam stay clear region: $15\sigma + 3$ mm in X, $20\sigma + 3$ mm at Y Height of mast tips can not be too much, 0.6 mm
- SR is simulated at CEPC and can contribute 4×10^4 photons at central beampipe per bunch. All of them come from the scattering at beampipe (0.7-4.2m).
- With three mask tips at \pm (4.2, 1.93 and 1.51)m, the number of photons reduced to ~ 60 per bunch.
- The secondary photons, i.e. K-shell photon, is missing in current study and will be included in future.
- Further optimization of mask tips maybe needed.
- Simulation of the scattered photon and detector will be performed with enough statistics.