

DEPFET active pixel detectors with integrated support and cooling

CEPC workshop, IHEP Beijing, November 2018

Marcel Vos, IFIC, CSIC/UV, Valencia, Spain

Acknowledging contributions and inputs from L. Andricek, P. Gomis, C. Koffmane, C. Marinas, C. Niebuhr and B. Schwenker, M.A. Villarejo

- DEPFET active pixels: introduction
- Belle II VXD production and installation
- A micro-channel cooling solution for CEPC

Precision vertexing requires highly integrated devices

Detector-grade fully depleted silicon sensor

In-pixel FET amplifies signal: thin (50 μm) sensor suffices

read-out electronics: on the silicon

Power & signal lines: on the silicon

Support structure: = the silicon

DEPFET PXD all-silicon module

One-slide DEPFET history

marcel.vos@ific.uv.es

ASICs: production for Belle II

- \triangleright Drain Current Digitizer DCD (front-end, ADC)
 - □ Final chip DCDB4.2, "DCD"
- ▷ Data Handling Processor DHP (data reduction, CMC, off-module driver ..)
 - **Final chip DHPT1.2b, "DHP**
- \triangleright Switcher (HV chip for row addressing and Clear)
 - Final chip SwitcherBv2.1, "SWB"

Status at end of 2017: all components ready for module and ladder assembly LCWS18, Arlington, October 2018 6 marcel.vos@ific.uv.es

PXD9 sensor production

- A total of 29 wafers finished
- \triangleright PXD9-6: 3 wafers pilot run
 - First module assembly, DESY test, gated mode tests
- \triangleright PXD9-7: 4 wafers pre-production
 - Lessons from pilot run implemented (improved periphery routing)
 - Modules for Phase 2
- \triangleright Main production
 - PXD9-8: 9 wafers
 - PXD9-9: 6 wafers
 - PXD9-10: 7 wafers
- \triangleright Wafer level tests throughout production cycle
 - after 1st metal
- \rightarrow global characteristics, IV

 \rightarrow pixel yield

- after 2nd metal
- □ after 3^{rd} metal \rightarrow periphery

Sensor production yield

Combined	PXD9-6 (3 wafers)			PXD9-7 (4 wafers)			PXD9-8 (9 wafers)									
Wafer arrangement	W30	W35	W36	W31	W37	W38	W40	W32	W33	W41	W42	W43	W44	W45	W46	W47
Inner Forward	G58.4	G98.4	G99	G98.9	G98.4	B98.8	G100	G100	B98.4	G99.5	G99.3	G100	G99	M99.5	G99.5	G99.5
Outer Forward 1	G99.9	G98.4	G99	G98.4	G98.1	B98.4	G99.5	G99.5	G100	G99.5	M100	G100	G100	G99.5	G100	G98.1
Outer Forward 2	G99.5	M99	G99.5	G99	B98.4	B98.4	M99.5	G100	G100	B99.5	M100	B99.5	G100	G100	G99.9	B98.4
Outer Backward 1	G97.5	G88	G98.4	G99.4	G98.4	G97.9	M100	B99	G99.5	B98.4	G99.5	B38.4	G99	B99.5	G99.5	B98.4
Outer Backward 2	G98.6	G96.9	G98.6	G99.5	G99.5	B98.1	G99.9	G100	B99	B98.4	G100	M99.9	G100	G100	G100	B98.4
Inner Backward	G97.9	M100	G99.5	G100	G98.4	G98.4	G100	G100	B98.4	G100	G100	G100	G100	G100	G99.5	G99.5

Combined	PXD9-9 (6 wafers)							PXD9-10 (6 wafers)					
Wafer arrangement	W01	W02	W03	W04	W05	W06	W07	W08	W09	W10	W11	W12	W13
Inner Forward	B95	G99	G99	G99	G99.3	G98.8	B17.9	G99.5	G99.4	G99	G99.3	B100	G99.5
Outer Forward 1	G99.6	G99	B99.2	G99.3	G99.5	G98.9	B37.9	B99	G99	G98.4	G99	G99	G97.9
Outer Forward 2	B98.2	B99	G99.4	B98	G99.3	G97.9	B37.9	G99.5	G99.5	G98.4	G99	M98.9	B98.2
Outer Backward 1	G100	B98.9	G99	M99	G99	G99	B37.9	G99	G99	G98.4	B95.5	G99.5	B98.2
Outer Backward 2	B99	B98.9	B99.4	B99.5	B98.9	B99	B37.9	G99	M99.5	B97.6	B98.8	G99	G98.4
Inner Backward	G94.4	M99	G100	M99.5	G98.4	M99.5	B17.9	B99.5	G100	B99	M98.7	B99	G99

	REQ	G99	G98	G95	M99	M98	M95
Inner Forward	8	17	3	0	1	0	0
Outer Forward	12	26	6	2	3	1	0
Outer Backward	12	22	3	1	4	0	0
Inner Backward	8	13	3	0	3	1	0

G: good M:Medium B:Bad The number behind gives the minimal percentage of live pixels on the sensor

-: same table as after 2nd metal testing

-: 100% yield for thinning and copper process

module and ladder assembly - in a nutshell

1. Flip Chip of ASICs (~240°C)

▷ DHP/DCD/SWB bumping at TSMC/Europractice/IZM

2. SMD placement (~200°C)

- \triangleright Passive components at HLL Munich
- \triangleright Probe-card test

3. Kapton (~170°C) & wire bonding

- \triangleright Kapton attached at MPP Munich
- \triangleright Full module characterization

4. ladder gluing (RT)

- \triangleright Two modules form one ladder, at MPP Munich
- \triangleright ladder tests

Intermediate module tests

6

PROBE CARD: ACTUAL HARDWARE

 With the help of the micrometer on the left, we apply the desired overtravel (~40 microns).

P. Gomis (Pablo.Gomis@ific.uv.es) @ 21st International Workshop on DEPFET detectors and applications - 29/05/2017

 Modules are placed with their base jig on the cooling jig and secured with screws and vacuum under the probe card.

Through the optical microscope we can align the needles with the module and calibrate at what point the touchdown is performed.

	stand	ard te	sts	Optional tests						
	Power	JTAG	Boundary	HSL	Analog power	Matrix	Overall			
W01_IB										
W02_IB										
W46_IB										
W47_IB										
W44_IF										
W45_IF										
W46_IF										
W47_IF										
W03 IB										
W43 IB										
W44 IB										
W45 IB										
W02 IF										
W03 IF										
W05 IF										
W43 IF										
W09 IB										
W32 IB										
W41 IB										
W42 IB										
W08 IF										
W32 IF										
W41 IF										
W42_IF										

Final module tests

Final module tests

71 modules tested at several sites

- automated standard procedure

Confirm all aspects of operation

- → optimized parameters

- → linear response of the ADC
 → high-speed links of the DHP
 → study signal of radioactive sources
 (vs. DEPFET voltages: drift, HV, Clear-Off)

11

BEAST II – commissioning detector

September 2017: installation of DEPFET PXD modules in Belle II commissioning detector

BEAST II

The PXD analogue cluster signal height offers excellent separation between charged particle and photon hits

BEAST2: gain uniformity

BEAST II BEAST II BEAST II BEAST II BEAST II BEAST II BEAST II

- All regions show clear Landau peak for charged tracks
- Fitted most probable charge varies on scale ~15% over sensor

BEAST II: gain vs. dose

Dose from diamond sensors

- BEAST2 is subjected to significant ionizing dose during phase 2 operation gain varies with dose due to threshold shift of in-pixel FET
- diamond sensors indicate 5 krad, threshold shift indicates larger dose
- lost gain is recovered by adjusting Gate-On voltage

Superi

18 commission

BEAST II: gain vs. dose

- BEAST2 is subjected to significant ionizing dose during phase 2 operation gain varies with dose due to threshold shift of in-pixel FET
- diamond sensors indicate 5 krad, threshold shift indicates larger dose
- lost gain is recovered by adjusting Gate-On voltage

Super

commission

ladder assembly

61,440 43,520 17,920 0,850 17,920 23,135 43,520 23,135 \triangleright four module types \triangleright → L1bwd, L1fwd, L2bwd, L2fwd 5 two ladder types (inside) or Layer 1-fwd 0.850 14.080 22,775 30 720 14.080 22,775 \rightarrow L1 and L2 44,800 136,000

170,000

- \triangleright ladder gluing procedure tested on 9 dummy ladders (good results)
- \triangleright Many assembled ladders failed on ladder test stand
 - \rightarrow shorts due to problems with passivation/cleanliness

June 2018: descoping decision

- Due to too high failure rate of ladder glueing process we decided to install a de-scoped PXD in 2018
 - complete L1: 8 ladders
 - partial L2: 2(12) ladders
- Ladder mounting on both PXD half shells
 - HS-2p3 without mylar foil (4 L1 ladders)
 - HS-1p3 with mylar foil (4 L1 + 2 L2 ladders)
- Both half shells commissioned at DESY

Better than business: the captain's sleeping-cabin

CEPC workshop Beijing, November 2018

marcel.vos@ific.uv.es

Beampipe & HS-2p3 ready to receive HS-1p3

Mounting of HS-1p3 on Beampipe

PXD with FOS Fibres Installed

22

Fully assembled PXD

23

Final PXD Phase 3 Arrangement

LCWS18, Arlington, October 2018

Marcel.vos@ific.uv.es

September 21: All 20 PXD Modules Up and Running

Integrated with SVD!

Fully Assembled VXD

Fully Assembled VXD

Oct 4

Wafer Production for PXD 2020 at HLL

- 2 new PXD production batches
 - PXD9-20 7 wafers
 - PXD9-21 12 wafers
- Production proceeds in 4 phases
 - 0) oxidation and back side implant1) poly gates, implants, first contacts
 - 2) two layer AI metallisation, contacts
 - 3) thinning, Cu process, dicing

Status of production

- PXD9-20 in phase 1
 - phase 2 ~ April 2019
 - phase 3 ~ Summer 2019
- PXD9-21 in phase 1
 - 21-Phase 2 ~ Summer 2019
 - 21-Phase 3 ~ Autumn 2019

Installation of new PXD in summer 2020

CEPC workshop Beijing, November 2018

Both poly layers and all implantations done → layer deposition for first contact system

first poly layer finished → clear implantation (3rd of 6 implantations)

29

New Ladder Assembly Procedure

Old procedure Ceramic stiffeners come from top

Sensor facing down: contact to ceramic jig

Concept

- minimize possible impact of remaining dust particle by avoiding any contact to sensor matrix
- improve cleanliness of environment
- otherwise change as little as possible to profit from previous learning curve

Procedure has to be worked out in more detail and needs to be extensively tested and qualified
Presently setting up an internal review committee

CEPC workshop Beijing, November 2018

Proposed procedure Sensor facing up: no contact to any jig

Ceramic stiffeners to be lifted from below

Cooling of silicon detectors

- Modern strip and pixel detectors have large channel density \rightarrow high power consumption
- Sensor temperature must be low and uniform \rightarrow sub-0 at hadron colliders
- FE-electronics and sensor are tightly coupled \rightarrow heat source and cold sensors
- Minimize material in services and supports

Micro Channel Cooling seems the natural solution maybe inevitable at a DC machine?

- Indeed, quite some interest in HEP world
 - Part of one running experiment (NA62 GigaTracker)

 - Focused R&D ongoing in LHCb for VELO upgrade
 Exploratory R&D work in ALICE, ATLAS, DEPFET collaborations
 - WP9 of AIDA-2020 provides a forum, "standards" & generic R&D funding

The case for MCC in HEP

Issues:

- \rightarrow thermal barriers (glue layers at each interface)
- \rightarrow material budget (avoid high-Z material)
- \rightarrow coolant contact àrea
- \rightarrow CTE mismatch (cf. ATLAS IBL experience)

Micro-channel cooling, our take...

- Liquid cooling provides excellent temperature control, but is too bulky
- DEPFET, with localized power dissipation and SOI process, provides an interesting application → integrate cooling in all-silicon ladder
 Compared to existing effort, aim at relatively high T, low P
- Keep it simple: mono-phase
- Small team at University of Bonn MPG-HLL Munich and IFIC Valencia
- Embedded in larger effort AIDA2020 (P. Petagna CERN)

Integrated cooling channels in position-sensitive silicon detectors, JINST 11 (2016) no. 06, P06018 L. Andricek¹, M. Boronat³, J. Dingfelder², J. Fuster³, I. Garcia³, P. Gomis³, C. Lacasta³, G. Liemann¹, C. Marinas², D. Markus², J. Ninkovic¹, M. Perelló³, E. Scheugenpflug¹, M.A. Villarejo³, M. Vos³ ¹MPG Halbleiterlabor Munich, ²Bonn University, ³IFIC (UV/CSIC) Valencia

All-silicon ladder with integrated cooling

a) oxidation and back side implant of top wafer	c) process → passivation
Handle <100> Wafer	open backside passivation
Custom made SOI Wafer D b) wafer bonding and grinding/polishing of top wafer	d) anisotropic deep etching opens "windows" in handle wafer

thinned all-silicon module with integrated cooling channels

- :- integrate channels into handle wafer beneath the ASICs
- :- channels etched before wafer bonding \rightarrow cavity SOI (C-SOI)
- :- full processing on C-SOI, thinning of sensitive area
- :- micro-channels accessible only after cutting (laser)

All-silicon ladder with integrated cooling

Thermal measurements

Good agreement with the FE simulation within 10%

Thermal figure of merit (temperature gradient/power density) = 1

Other coolants being investigated (C6F14 at CERN)

Thermo-mechanical measurements

Low pressure mono-phase liquid flow of few I/h removes local heat very efficiently. Insignificant impact on mechanical stability.

Low-mass in-plane connectors

Low-Z 3D-printed connectors Arbitrary complexity, 30 μ m tolerance \rightarrow self-align with silicon channels

Very rapid prototyping, very cheap

Pressure-tested to >100 bars

First attempt (0.81% X/X₀) Mechanical interface to standard commercial Swagelok fittings

Past (0.21% X/X₀) Smaller fittings

Present (0.05% X/X₀) Glue PEEK tubes

marcel.vos@ific.uv.es

Summary

BEAST II successfully operated in SuperKEKB

- Crucial commissioning experience
- Important feedback on background level
- Finalized the pixel detector for Belle II
- Second PXD layer descoped due to losses in ladder assembly
- The first DEPFET-based vertex detector!
- PXD+SVD ready for installation and PXD2020 on its way
 Micro-channel cooling works!
- Excellent solution for CEPC