

CALICE AHCAL overview

Yong Liu (IHEP), on behalf of the CALICE collaboration

Nov. 13, 2018

- Overview
- Construction: AHCAL technological prototype
- Test beam activities

High granularity and SiPM: a brief history

- 2001: CALICE founded
 - Aim to develop high-granularity calorimeters at a future linear collider
- 2003: MiniCal (100 tiles+SiPMs)
- 2006-2011: AHCAL Physics Prototype
 - Test beam data at CERN and FNAL
 - Detailed shower studies
- 2012: CLIC studies triggered LHC interest
 - Particle-flow paradigm and pile-up rejection with high granularity in harsh conditions
- 2014-2017: CMS HGCAL design
- 2016-2018: AHCAL Technological Prototype for ILC
 - Demonstrate the scalability to build a full detector

AHCAL overview

AHCAL inside magnet:

- Sandwich calorimeter: scintillator-SiPMs with steel absorbers
 - Electronics fully integrated into active layers
- High granularity: 8M channels in total
- Challenges for mass assembly and data concentration
- Power-pulsing at ILC: passive cooling for active layers

AHCAL overview

- Passive cooling for AHCAL active layers at ILC
 - Power-pulsing at ILC: low duty cycle (1%) with bunch trains at 5 Hz
 - FE electronics designed for the ILC bunch structure
- Challenges for CEPC: no power pulsing
 - Electronics: continuous readout
 - Cooling scheme

High granularity: numbers!

- AHCAL
- 60 sub-modules
- 3000 layers
- 10,000 slabs
- 60,000 HBUs
- 200,000 ASICs
- 8,000,000 SiPMs + tiles

- 1 year
- 46 weeks
- 230 days
- 2,000 hours
- 120,000 minutes
- 7,200,000 seconds

Key: automated mass assembly

Evolution of the SiPM-tile design

2003: MiniCal

2009-2014: tile without WLS, side-coupling

2013-2016: SiPM-on-tile, bottom coupling

A long way to the design for automated mass assembly

AHCAL tech. prototype: goals

- Technology
 - Demonstrate the scalability to build a final detector
 - Validate automated assembly and QA procedures
 - Evaluate the performance with
 - Active temperature compensation
 - Power pulsing
- Physics
 - Study showers in 5D
 - Energy, 3D position and timing (ns)
 - Validate simulation models in Geant4
 - Study timing in particle flow

Detector unit: SiPM-on-tile design

- SiPM: greatly improved performance
 - Reduced dark count
 - Lower inter-pixel crosstalk
 - Noise rate decreases quickly with threshold
 - Good uniformity (operational voltage, gain)
 - Simplifies in-situ calibration
- Tile design
 - Simple for tile mass production (by injection molding)
 - Excellent response uniformity
 - Suitable for automated mass assembly with surface-mounted SiPMs

Construction and QA

Tile wrapping

University of Hamburg

- Scintillator tiles need wrapping with reflective foil for optimal performance
- A custom-made machine for wrapping

Started in Oct. 2017

Tile assembly

University of Mainz

- Glue dispensing machine: put glue on PCB before tile assembly (not in photos)
- Pick-and-place machine (industry standard): trained for tile assembly

Started in Nov. 2017

Quality Assurance (1)

- Scintillator tiles
 - Spot check for mechanical tolerances
 - Some deviations affected automated wrapping and assembly

• SiPMs:

- Spot check for break-down voltage, gain, noise, cross-talk
- All samples passed, excellent uniformity
- ASICs
 - Semi-automated tests on a dedicated board
 - Yield 80~90%

University of Wuppertal

Quality Assurance (2)

- Readout modules (HBUs) without tiles
 - Tested with on-board LEDs system before tile assembly
 - 158 out of 160 boards OK
- HBUs with tiles
 - Extensive tests with cosmic muons
 - Most boards: very good light yield uniformity

Active layer: integration and commissioning

- Interface boards
 - A set can serve up to 18 readout modules for the ILC HCAL
 - DIF: interface between ASICs and data concentrator
 - CALIB: control on-board LEDs
 - POWER
 - Power distribution and regulation
 - Cycling capacitors for power pulsing

An active layer: 2x2 HBUs with a set of interface boards

DESY

Active layer: commissioning

- Commissioning with cosmic muons:
 - Light yield
 - DAQ stability
- Commissioning with DESY electron beam
 - 5 layers at a time without absorbers (in "air stack")
 - Initial MIP calibration: automatic scan for all channels
 - Active temperature compensation for SiPMs
- 8 dead channels out of 21,888 in total

Stack integration and commissioning

- Integration
 - Stack: dimensions for a module of the final full collider detector
 - Data concentration
 - Wing-LDA (hardware)
 - 1x Ethernet for data from all layers
 - Data acquisition: EUDAQ
 - Cooling system
 - Only for interface boards
- Commissioning with cosmics
 - Test the full software chain

AHCAL technological prototype

- 38 active layers
 - 21,888 channels
 - 608 ASIC chips
 - 2x2 HBUs (72x72 cm²) per layer
 - 576 channels
- Absorber structure
 - 40 layers (EUDET stack)
 - 1.7cm thick per layer
 - ~4 λ in total

Goals of SPS beam tests

- Technology
 - Demonstrate capabilities of the SiPM-on-tile calorimeter concept with a scalable detector design
 - Achieve reliable operation of a large prototype
- Physics
 - SiPM-on-tile HCAL performance: energy linearity and resolution up to 100 GeV
 - For single particles: electrons, pions
 - Shower profiles and separation
 - Shower timing

Beam tests at CERN SPS in 2018

- 2 beam periods at SPS H2
 - 2 weeks in May 2018
 - ~1 week in June-July 2018
- Setups
 - In May: AHCAL main stack
 - In June: as in May, plus
 - One module with 6x6 cm² tiles
 - Tail-catcher, CMS HGCAL "thick stack" (12 layers of single HBU, 7.4 cm thick steel absorber)
 - Single HBU in front of absorber as pre-shower
 - Mounted on the movable platform
- Beam area instrumentation
 - Wire chambers
 - Trigger scintillator
 - Cherenkov counter

Data taking status

- General
 - Stable running
 - All layers working well, <0.1% dead channels
- Muons: MIP calibration
 - Scanning at several positions
- Electron: energy scan
 - Range: 10-100 GeV
 - 0.2~0.4 M events per energy point
 - With and without power pulsing
- Pion (negative): energy scan
 - Range: 10-200 GeV
 - 0.4~0.6 M events per energy point
 - With and without power pulsing

Gain calibration

- Extracted from on-board LED data
- Pedestal
 - Hints on noisy/dead channels
- SiPM gain
 - ADC translated to #pe in SiPM
 - Basis for SiPM saturation calibration
 - Monitoring SiPM/detector stability
- Status
 - Homogeneous gain
 - Stable operation

Inter-calibration: high gain and low gain

- 2 modes: High gain vs low gain
 - Two preamps in ASIC with different amplification factors
 - To increase the dynamic range
 - The ratio of two amplification factors: inter-calibration
 - Extracted from LED data
- Next steps
 - Pedestals in low gain mode
 - Application to testbeam data

MIP calibration

- Muons: position scan of the full detector
 - Use pedestals from non-triggered channels (~350k constants!)
 - Determine MIP scale for all channels (~22k channels)
- Calibrations for May and June data: done
 - Without and with power pulsing

Calibrated amplitude spectrum

First glance at testbeam data

Common CALICE-CMS beam test

- CERN SPS H2: 2 weeks in Oct 2018
 - 94 silicon modules (6") in the ECAL and front HCAL section (up to 40 layers)
 - 156 SiPM-on-Tile modules (39 layers) in the HCAL back section
 - =CALICE AHCAL prototype
 - Common DAQ: EUDAQ2 (AIDA2020)

Further R&D: new SiPM and ASIC

- New SiPM developed at NDL (Beijing Normal University)
 - High PDE with high pixel density (>=10k pixels per mm²)
 - Vertical quenching resistor: high fill factor -> high PDE
 - High dynamic range: mitigate non-linearity effect with strong signals
 - Promising candidate to measure EM showers

- KLauS ASIC (KIP, University of Heidelberg)
 - Low noise, low power dissipation
 - High precision for low-gain SiPM (small pixel size, e.g. ~10μm)
 - Continuous readout without dead time

Further R&D: SiPM studies with Klaus

Summary

- CALICE AHCAL technological prototype successully built and commissioned
 - ~22,000 channels (156 readout modules)
- Demonstrated scalibility to build a full detector
 - Novel detector design: SiPM-on-tile
 - Procedures for construction and quality assurance
- First beam tests with the AHCAL new prototype
 - Smooth and successful data taking
 - Calibrations finished
 - More analysis efforts ongoing
- Further R&D efforts
 - SiPM and ASIC, mega-tile, ...
- Plans: more beam tests (fast timing, tungsten absorber, ...)