

CEPC Higgs Combination

Zhang Kaili¹, Wang Jin¹, Liu Zhen²

1.Institute of High Energy Physics 2.University of Maryland

The 2018 International Workshop on the High Energy Circular Electron-Positron Collider

2018, Nov. 13

Beijing

Outline

- Motivations
- Individual channel status
- Input correlations
- Fit results
- Summary

Why Combination?

- In current CEPC study, with S/B MC sample
 - Expected precision for each channel can be calculated
- Uniformed, simultaneous statistical framework
 - Get likelihood scan result
 Robust & Reliable;
 - Correctly consider the correlations from individual inputs
 - Full Hadronic; ZH bkg; WW fusion; width.....
 - Extensibility
 - Extrapolations, systematic uncertainties, theoretic assumptions
 - Currently uncertainties are statistical dominant.
 - Currently, with MC sample
 - Build Asimov data from signal and bkg spectrum
 - To get the estimated precisions of $\sigma * Br$, and κ .
 - Also other interesting values, significance, upper limits.....

Fit techniques

- For each channel
 - Input observables from MC sample. Use unbinned, multi-dimensional input if possible;
 - Establish combined S+B Pdf: N_{bb}*Pdf+N_{cc}*Pdf_{cc}+.....+N_{bkg}*Pdf_{bkg}

Different components coupled this way;

- Event yield N_{bb} can be described in the following scenario:
 - $N_{bb} = N_{bb_{SM}} * \mu_{bb}$ $\sigma * Br$ $N_{bb_{SM}}$ directly from SM prediction (5.6ab⁻¹) • $N_{bb} = N_{bb_{SM}} * \frac{Br}{Br_{SM}} * \frac{\sigma(ZH)}{\sigma(ZH)_{SM}}$ Br $\Delta(\sigma(ZH)) = 0.50\%$ • $N_{bb} = N_{bb_{SM}} * \kappa_z^2(\kappa_w^2) * \kappa_b^2/\Gamma_H$ κ Channels share the same μ . e.g. $Z \rightarrow ee, \mu\mu, qq, \nu\nu$, share the same μ_{bb}
- N_{bb} floated Pdf shapes fixed
- Use Combined pdf to make Asimov data
- Scan the likelihood and obtain the 1σ deviation

٠

Extrapolation: CEPC-v1 to v4

- Most analyses are done in CEPC-v1 version
 - B=3.5T, $\sqrt{s} = 250 GeV$, $L = 5ab^{-1}$
- Now: B=3T, $\sqrt{s} = 240 GeV$, $L = 5.6ab^{-1}$
 - m_H resolution 15% worse in $H \rightarrow \mu\mu$ due to magnetic field
 - Scale the signal and background with the factor
 - 250 to 240GeV: Signal: ~-5%; 2f bkg: ~+8%; 4f bkg: ~+3%
 - 5 to 5.6 ab^{-1} : All +12%;
 - In total there would be 1.13M Higgs; (Fcc-ee 1M)
 - Following result all scaled to the latest CEPC-v4.

$\sigma(ZH)$ measurement: H \rightarrow inclusive

- Possible by tagging higgs with recoil mass
- Zhenxing: 1601.05352
 - Fit the Z \rightarrow ee, Z \rightarrow $\mu\mu$, model independently
 - Z->ee: 1.42%
 - $Z \rightarrow \mu \mu$: 0.91%
 - $Z \rightarrow qq$: 0.6%, extrapolated from 1404.3164
 - Combined: 0.5%

Table 3. Estimation of biases of σ_{ZH} caused by potential variances of the Higgs decay branching ratios.

Decay mode	$Bias(\times 10^{-4})$			
$H \rightarrow b\bar{b}$	-0.10	Z decay mode	Δm_H (MeV)	$\Delta\sigma(ZH)/\sigma(ZH)$
$H \rightarrow WW$	+0.20	e^+e^	14	1.4%
$H \rightarrow gg$	-0.18	$\mu^{+}\mu^{-}$	6.5	0.9%
$H \rightarrow \tau \tau$ $H \rightarrow c\bar{c}$	+0.05	aā	_	0.6%
$H \rightarrow ZZ$	-1.85	Combination	5.9	0.5%
$H \rightarrow \gamma \gamma$	+2.56			
$H \rightarrow \gamma Z$	-2.08			
$H \rightarrow \text{inv.}$	+5.75		Kaili Zhan	g

$H \rightarrow bb/cc/gg$

- b, c quark, gluon, and hadronic ww/zz can not be well separated.
- Mass distribution has no separation power
 - Flavor tagging algorithm
 - Each jet has the likeness bj1 and cj1;
 - Calculate dijet's B likeness and C likeness.

 $B_{likeness} = \frac{b_{j1}b_{j2}}{b_{j1}b_{j2} + (1 - b_{j1})(1 - b_{j2})}$

- b/c quark likeness, from 0 to 1.
- 2d Template fit, 20*20 bin
- For IIH, 3d fit, add recoil mass
- Each channel 7 parts: bb, cc, gg, ww, zz, tt, bkg_{sm}.

Kaili Zhang

$H \rightarrow bb/cc/gg$

In mass plot bb/cc/gg share the same behavior, But in L_B , L_C good separation.

Still tricky for gg/WW/ZZ components.

Next step: plan to establish different categories to study bb/cc/gg/ww/zz.

Scan	µ_bb	μ_cc	µ_gg
ееН	1.3%	13.5%	7.2%
mmH	1.0%	9.5%	5.0%
qqH	0.5%	11.1%	3.6%
vvH	0.4%	3.8%	1.5%
Combined	0.28%	3.3%	1.3%

WW, ZZ

	preCDR	Now	
WW	1.5%	1.0%	
ZZ	4.3%	5.1%	

• Pre_CDR ZZ result extrapolated from Fcc-ee. Overestimated;

- Current ZZ study suffered from huge background
- Also gained contribution from $H \rightarrow bb/cc/gg/WW$ decay.
- Undergoing study <u>Kong LingTeng</u>
- WW

• ZZ

- Much more channels studied since Pre_CDR.
- Poster: <u>Li Tong</u>

Green: studied Yellow: Problematic

	Z	ee	μμ	vv	qq
WW	ev+ev				
	μν+μν				
	ev+μv				
	ev+qq				
	μv+qq				
	qq+qq				

	Z	ee	μμ	vv	qq
ZZ	ee+qq				
	μμ+qq				
	vv+qq				
	+				
(Invi)	vv+vv				
	qq+qq				
	ll+vv				

au au		Pre_CDR	Now	
ιι, μμ	ττ	1.2%	0.81%	
	μμ	17%	17%	
• <i>TT</i> :				1

CEPC CDR

- Develop LICH to identify lepton. Eff>99% •
- Signal and ZH events (Main WW) share the same shape •
- use $\log_{10}(D_0^2 + Z_0^2)$ + mass 2d fit to separate signal •
 - Impact parameter, Distance from beam spot, ٠
- Poster: Yu Dan •

ZH fin	Precision	
$Z{\rightarrow}\mu^+\mu^-$	$H{\rightarrow}\tau^{+}\tau^{-}$	2.6%
$Z\!\rightarrow\!e^+e^-$	$H{\rightarrow}\tau^{+}\tau^{-}$	2.7%
$Z{\rightarrow}\nu\bar\nu$	$H{\rightarrow}\tau^{+}\tau^{-}$	2.5%
$Z{\rightarrow}q\bar{q}$	$H{\rightarrow}\tau^{+}\tau^{-}$	0.9%
Comb	0.8%	

- $\mu\mu$:
 - Dominant by Z->qq H-> $\mu\mu$; •

Kai

 $\gamma\gamma$, $Z\gamma$

 γγ
 9.0%
 6.8%

 zγ
 \
 16%

Now

Pre_CDR

- Use $m_{\gamma\gamma}$, $m_{\gamma\gamma}^{recoil}$ 2d fit to improve $\gamma\gamma$ precision.
- Photon convention not counted in current study.

Constrained by Ecal resolution

• Current design: $15.1\%/\sqrt{E}$

Poster: Guo Fangyi

CEPC CDR

50

CEPC CDR

5.6 ab⁻¹, 240 GeV

 $Z \rightarrow \mu^+ \mu^-$, $H \rightarrow \gamma \gamma$

60

∆M[GeV]

130 135 Μ_{γγ} [GeV]

70

5.6 ab⁻¹, 240 GeV

 $ZH \rightarrow ZZ\gamma \rightarrow \nu\nu \eta \overline{\eta} \gamma$

Invisible decay

- Pre_CDR's 0.28% is one exotic study.
- $H \rightarrow ZZ \rightarrow vvvv$
 - Large irreducible bkg, use BDT and seek upper limit.
 - Huge fluctuation, use Asimov Data to get correct fit result.
 - precision 153%, upper limit for Br: 0.41%
 - Upper limit for BSM H \rightarrow invisible: 0.30%
 - See more in Ryuta's report !

Z->ee

Z->mm

Z->qq

Combined

Different story.

0.41%

153%

Input correlations among channels

- In individual analysis, other Higgs processes usually tagged as bkg;
 - Should be taken into account in combination.
 - e.g. $Z(\rightarrow \mu\mu)H(\rightarrow \tau\tau)$, main bkg is $H \rightarrow WW$.
 - Those WW events should be considered when computing μ_{WW} .
 - Full hadronic decay
 - bb/cc/gg/WW/ZZ mixed together.
- Anti-correlation matrix
- Overlap

18/11/13

- Fix some components to simplify
- Undergoing

- Correlation: $vvH \rightarrow bb$
- 2d fit M_{ii}^{reco} & Cos θ_{ii}
- Correlated with $ZH \rightarrow bb$
 - Fix ZH process, Initial uncertainty is 2.8%.
- Use the likelihood from $Z(\rightarrow ee/\mu\mu/qq)H(\rightarrow bb)$ to constrain
 - No assumption made •
 - $vvH \rightarrow bb$ and $ZH \rightarrow bb$ share the anti-correlation -45%. (-34% in ILC(1708.08912))
- $\sigma(vvH) * Br: 3.0\%$;
 - *σ*(*vvH*): 3.2%.
- See more in Hao's report!

CEPC Simulation

	Error
Fix ZH	2.8%
Float ZH	3.0%

Correlation: Higgs width

• In Pre_CDR, width determined by

$$\Gamma_H = \frac{\Gamma_{H \to ZZ}}{Br(H \to ZZ)} \propto \frac{\sigma(ZH)}{Br(H \to ZZ)}$$
 and $\Gamma_H = \frac{\Gamma_{H \to bb}}{Br(H \to bb)} \propto \frac{\sigma(\nu\nu H \to \nu\nu bb)}{Br(H \to bW)}$

- If two independent: 2.7% (ZZ: 5.1% WW fusion: 3.3%)
- But width correlated with all channels
 - Like correlation like $vvH \rightarrow vvbb$ and $ZH \rightarrow bb$ -45% not included -> would worse the result
- Combined fit in 10κ framework:

$$\Delta(\Gamma_H) = 2.8\%$$

Channels Table (2018.11)

All scaled to 240 GeV, 5.6ab⁻¹

Si	gnal	Drasisian	Si	gnal	Droeision	Signal		Drogicion	
Z	Н	Precision	Z	Н	Precision	Z	Н	TECISION	
	H->qq			H->WW			Η→γγ, Ζγ		
	bb	1.32%		lvlv	9.52%	μμ+ττ		23.7%	
ee	сс	13.5%	ee	evqq	4.56%	vv	γγ	10.5%	
	gg	7.22%		μνqq	3.93%	qq		9.84%	
	bb	0.99%		lvlv	7.29%	vv	Zγ(qqγ)	15.7%	
μμ	СС	9.54%	μμ	evqq	3.90%	vv	H(WW fusic	/W fusion)	
	gg	5.01%		μvqq	3.90%	vv	bb	3.00%	
	bb	0.46%		qqqq	1.90%	Η→μμ			
qq	СС	11.1%		evqq	4.65%	qq			
	gg	3.64%	vv	μνqq	4.14%	ee		17 10/	
	bb	0.39%		lvlv	11.5%	μμ	μμ	17.170	
vv	сс	3.83%	qq	qqqq	1.75%	vv			
	gg	1.47%		H->ZZ			Η→ττ		
H->Iı	nvisible		vv	μμqq	8.26%	ee		2.75%	
qq		232%	vv	eeqq	40%	μμ		2.61%	
ee	ZZ(vvvv)	370%	μμ	vvqq	7.32%	qq	ιι	0.95%	
μμ		245%	ZH bkg c	ontribution	19.4%	VV		2.66%	

Fit result of $\sigma(ZH) * Br$

(5.6ab⁻¹)	Current 2018.11	ILC 250	Fcc-ee	ILC: 1310.0763 FCC-ee: 1308.6176 Maybe obsoleted!
$\sigma(ZH)$	0.50%	1.2%	0.40%	ILC's result could be better adding ILC 500.
$\sigma(ZH) * Br(H \rightarrow bb)$	0.27%	0.6%	0.2%	
$\sigma(ZH) * Br(H \rightarrow cc)$	3.3%	3.9%	1.2%	Compared to Fcc-ee:
$\sigma(ZH) * Br(H \rightarrow gg)$	1.3%	3.3%	1.4%	hh/cc/gg. Can't separate them in reality:
$\sigma(ZH) * Br(H \rightarrow WW)$	1.0%	3.0%	0.9%	boyce, gg. can't separate them in reality,
$\sigma(ZH) * Br(H \rightarrow ZZ)$	5.1%	8.4%	3.1%	ZZ: Constrained by channels studied;
$\sigma(ZH) * Br(H \rightarrow \tau \tau)$	0.8%	2.0%	0.7%	yy: Constrained by Ecal resolution;
$\sigma(ZH) * Br(H \rightarrow \gamma \gamma)$	6.8%	16%	3.0%	vvH, H \rightarrow bb: Correlation with ZH;
$\sigma(ZH) * Br(H \rightarrow \mu\mu)$	17%	46.6%	13%	
$\sigma(\mathbf{v}\mathbf{v}H) * Br(\mathbf{H} \rightarrow \mathbf{b}\mathbf{b})$	3.0%	11%	2.4%	Our study considered input
$Br_{upper}(H \rightarrow inv.)$	0.41%	0.4%	0.50%	correlations and more reality
$\sigma(ZH) * Br(H \rightarrow Z\gamma)$	16%			factors.

κ Framework result

HL-LHC: ATL-PHYS-PUB-2014-016

The improvement of κ_{γ} from ${}^{Br_{ZZ}}/{}_{Br_{\gamma\gamma}} = 4\%$

Relative coupling measurement precision and the 95% CL upper limit on $\rm BR_{inv}^{\rm BSM}$							
	10-р	arameter fit	7-parameter fit				
Quantity	CEPC	CEPC+HL-LHC	CEPC	CEPC+HL-LHC			
κ_b	1.3%	1.0%	1.2%	0.9%			
κ_c	2.2%	1.9%	2.1%	1.9%			
κ_g	1.5%	1.2%	1.5%	1.1%			
κ_W	1.4%	1.1%	1.3%	1.0%			
κ_{τ}	1.5%	1.2%	1.3%	1.1%			
κ_Z	0.25%	0.25%	0.13%	0.12%			
κ_{γ}	3.7%	1.6%	3.7%	1.6%			
κ_{μ}	8.7%	5.0%	_	_			
BR_{inv}^{BSM}	< 0.30%	< 0.30%	_	_			
Γ_H	2.8%	2.3%	_	_			

See more in Zhen's report!

Kaili Zhang

Correlation of κ

For each entry, upper one is CEPC result lower one is CEPC+HL-LHC result.

10-parameter fit Correlation

		05	00	00	00	10	07	10	0.4	00
Kb	- 100.	65. 59.	90. 89.	93. 89.	96. 93.	19. 24.	37. 17.	16. 8.0	<0.1 <0.1	98. 97.
K _C	65. 59.	100.	53. 48.	61. 53.	63. 56.	12. 13.	24. 10.	10. 4.8	<0.1 <0.1	65. 58.
Кg	90. 89.	53. 48.	100.	86. 82.	88. 84.	16. 21.	34. 15.	14. 7.2	<0.1 <0.1	90. 88.
K _W	93. 89.	61. 53.	86. 82.	100.	89. 83.	18. 23.	35. 16.	15. 7.4	<0.1 <0.1	93. 89.
Kτ	96. 93.	63. 56.	88. 84.	89. 83.	100.	17. 21.	35. 16.	15. 7.5	<0.1 <0.1	94. 92.
ΚZ	_ 19. 24.	12. 13.	16. 21.	18. 23.	17. 21.	100.	6.8 15.	2.9 5.0	<0.1 <0.1	35. 43.
K _Y	37. 17.	24. 10.	34. 15.	35. 16.	35. 16.	6.8 15.	100.	5.8 1.7	<0.1 <0.1	36. 19.
κμ	- <mark>16.</mark> 8.0	10. 4.8	14. 7.2	15. 7.4	15. 7.5	2.9 5.0	5.8 1.7	100.	<0.1 <0.1	15. 8.5
3r _{inv}	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	100.	<0.1 <0.1
KΓ	98. 97.	65. 58.	90. 88.	93. 89.	94. 92.	35. 43.	36. 19.	15. 8.5	<0.1 <0.1	100.
ļ	Kb	K _c	Кg	KW	κτ	KZ	ĸ _y	κμ	Br _{inv}	KΓ

18/11/12

Summary

- Latest CEPC Higgs combination results are shown.
- Input correlations are taken in consideration.
- <u>CDR</u> and <u>CEPC Higgs white paper</u>
- To dos:
 - bb/cc/gg/ww/zz
 - $\sigma(ZH)$ correlations
 - •

	Estimated Precision			
Property	CEPC-v1		CEPC-v4	
m_H	$5.9 { m MeV}$		$5.9 { m MeV}$	
Γ_H	2.7%		2.8%	
$\sigma(ZH)$	0.5%		0.5%	
$\sigma(\nu \bar{\nu} H)$	3.0%		3.2%	
Decay mode	$\sigma \times \mathrm{BR}$	BR	$\sigma \times BR$	$_{\rm BR}$
$H \to b \bar{b}$	0.26%	0.56%	0.27%	0.56%
$H \mathop{\rightarrow} c \bar{c}$	3.1%	3.1%	3.3%	3.3%
$H \mathop{\rightarrow} gg$	1.2%	1.3%	1.3%	1.4%
$H \mathop{\rightarrow} WW^*$	0.9%	1.1%	1.0%	1.1%
$H {\rightarrow} ZZ^*$	4.9%	5.0%	5.1%	5.1%
$H {\rightarrow} \gamma \gamma$	6.2%	6.2%	6.8%	6.9%
$H {\rightarrow} Z \gamma$	13%	13%	16%	16%
$H{\rightarrow}\tau^{+}\tau^{-}$	0.8%	0.9%	0.8%	1.0%
$H{\rightarrow}\mu^+\mu^-$	16%	16%	17%	17%
$\mathrm{BR}^{\mathrm{BSM}}_{\mathrm{inv}}$	_	$<\!0.28\%$	_	< 0.30%