WW Fusion, $H \rightarrow bb$ and Higgs Width measurement at CEPC

Hao Liang

2018 International Workshop on the High Energy CEPC

13th, Nov. 2018

Contents

- Motivation
- ► *WW* fusion
 - Monte Carlo Samples
 - Simulation
 - Event Selection
 - Recoil Mass Reconstruction
 - Fit Model
 - Result
- Higgs width
- Next work

Motivation

- Higgs width is strongly of interest for physicists.
 - Extraction for absolute coupling of Higgs
 - New physics in Higgs invisible decay
- Impossible to be extracted from the line shape directly
 - Mass resolution a few GeV \gg Higgs width (4 MeV)
- Off-shell decay of Higgs at LHC
 - $\sigma_{H \to ZZ} / \sigma_{H \to ZZ} \propto 1 / \Gamma$
 - ▶ Best result: ≈20 MeV
 - CMS arXiv:1605.02329v2
 - ATLAS arXiv:1808.01191v2
 - Only 4MeV predicted by SM
 - Far from precision measurement

Motivation Cont'd

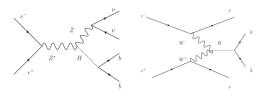
Two methods at CEPC

First method

$$\Gamma = \Gamma_{\mathrm{SM}} \cdot rac{\mu_{ZH}}{\mathrm{Br}(H
ightarrow ZZ)/\mathrm{Br}_{\mathrm{SM}}(H
ightarrow ZZ)}$$

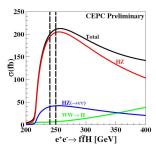
• Limited by the statistics of $H \rightarrow ZZ$, due to the small Br $(H \rightarrow ZZ)$, which is only 2.3% by the SM.

Second method (Better)


$$\Gamma = \Gamma_{\rm SM} \cdot \frac{\mu_{WW{\rm fusion}, H \to b\bar{b}}}{\left(\frac{{\rm Br}(H \to b\bar{b}){\rm Br}(H \to W^-W^+)}{{\rm Br}_{\rm SM}(H \to b\bar{b}){\rm Br}_{\rm SM}(H \to W^-W^+)}\right)}$$

• The bottleneck: WW fusion, $H \rightarrow b\bar{b}$

• Focus: WW fusion, $H \rightarrow b\bar{b}$


Motivation Cont'd

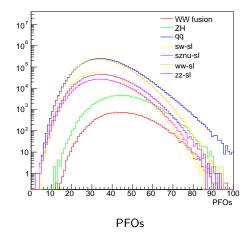
Two main channels for final states $\nu\nu H(b\bar{b})$ at CEPC:

Monte Carlo Samples

- Higgs samples
 - $\sqrt{s} = 240 \text{GeV}$
 - 100k *WW* fusion, $H \rightarrow b\bar{b}$ events
 - ▶ 100k $ZH, Z \rightarrow \nu\nu, H \rightarrow b\bar{b}$ events
 - ► The interference can NOT be generated by current software
 - Weight assigned according to:
 - ννH in total: Whizard2(Omega) 46.29fb
 - ▶ WW fusion take a fraction of 13%
 - ZH take a fraction of 87%
 - Simulated and reconstructed for CEPC-v4
- SM backgrounds samples
 - 2fermions + 4 fermions
- Result scaled to integral luminosity 5.6 ab⁻¹

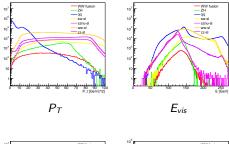
Event Selection

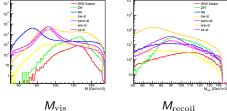
Main backgrounds


- Irreducible SM backgrounds:
 - ► $ZH, Z \rightarrow vv, H \rightarrow b\bar{b}$
 - 2fermions: bb
 - 4fermions: double Z ($\nu\nu b\bar{b}$), Single Z ($\nu\nu b\bar{b}$)
- 2jets + 1charged isolated lepton
 - ww-sl, sw-sl

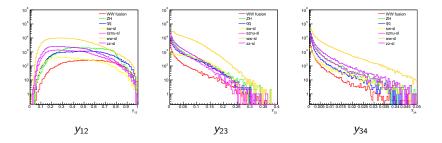
Pre-Cuts for SM backgrounds

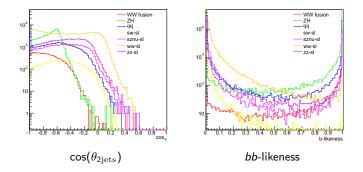
Pre-cut	Cut on reconstructed variables
$60 { m GeV}/c^2 < M_{ m mis} < 225 { m GeV}/c^2$	$65 { m GeV}/c^2 < M_{ m mis} < 135 { m GeV}/c^2$
$50 \text{GeV}/c^2 < M_{\text{vis}}$	$100 { m GeV}/c^2 < M_{ m vis} < 135 { m GeV}/c^2$
$10 { m GeV}/c < P_T < 100 { m GeV}/c$	$13 { m GeV}/c < P_T < 90 { m GeV}/c$


Selection for (semi-)hadronic final states:


Cut on number of Objects

(Cut in order. Previous cuts applied before the each cut variable was plot)


Selection according to the kinematic distribution:



Selection for di-jets events

Cut on output of clustering algorithm

Selection on the angle of di-jets and the flavor:

Signal and Higgs Backgrounds					
Cut	WW fusion	ZH			
$N_{\rm PFO(E>0.4GeV)} > 20$	19912	122073			
$105 \mathrm{GeV} < E_{\mathrm{total}} < 155 \mathrm{GeV}$	17939	114926			
$P_T > 13 \text{GeV}/c$	16694	111663			
Isolation lepton veto	15463	101951			
$100 < M_{\rm vis} < 135$	13929	100289			
$65 < M_{ m mis} < 135$	13846	99750			
<i>y</i> ₁₂ , <i>y</i> ₂₃ , <i>y</i> ₃₄	12251	90976			
$-0.98 < \cos(\theta_{2\rm jets}) < -0.4$	11416	88548			
bb - likeness > 0.4	10916	82597			

Main SM backgrounds

	indin on i	Jackgrounds			
Cut	$q\bar{q}$	sw-sl	sz-nu	ww-sl	zz-sl
Generated	250283714	13025535	744000	23788000	2581000
Pre-cut & reconstructed	5924182	1193000	658000	5208810	1112000
$N_{\rm PFO(E>0.4GeV)} > 20$	5717282	1138089	629242	5077296	1066096
$105 \text{GeV} < E_{\text{total}} < 155 \text{GeV}$	3821137	356219	529778	2883329	911700
$P_T > 13 \text{GeV}/c$	826961	351546	520798	2799966	891644
Isolation lepton veto	792950	59642	488958	1376469	818336
$100 < M_{\rm vis} < 135$	76396	33928	70942	652630	127555
$65 < M_{ m mis} < 135$	62586	19427	62508	446045	110631
$0.15 < y_{12} < 1$	61719	18517	58941	409226	103750
$y_{23} < 0.06$	54797	9651	53150	277300	92458
$y_{34} < 0.01$	53711	8629	50802	245424	87819
$-0.98 < \cos(\theta_{2jets}) < -0.4$	37224	5809	31017	133305	50646
bb - likeness > 0.4	25630	124	5745	3230	9764

However... note: numbers in above tables were normalized to $\mathrm{5ab}^{-1}$

Recoil Mass Reconstruction

- Number of WW fusion, H → bb̄ events mainly extracted from the recoil mass. The precision reconstruction of recoil mass is crutial.
- Raw method: The recoil mass is calculated by

$$m_{
m recoil} = \sqrt{(\sqrt{s} - E_H)^2 - p_H^2}$$

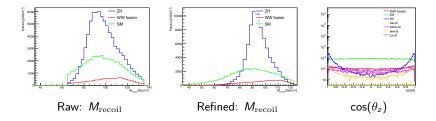
where E_H and p_H is reconstructed energy and momentum of Higgs, respectively.

 Refined method: The energy is replaced with the one calculated from the momentum

$$m_{
m recoil} = \sqrt{(\sqrt{s} - \sqrt{m_H^2 + p_H^2})^2 - p_H^2}$$

The refined method is refined, because:

(sensitivity of m_{recoil} to p_H) × (p_H resolusion) < (sensitivity of m_{recoil} to E_H) × (E_H resolusion)


Recoil Mass Reconstruction Cont'd

The other methods of modifying the energies of jets tried:

- Kinematic fit: Minimize the $\chi^2 = \sum_{i=1,2} \left(\frac{E_i - E_i^{reco}}{\delta_i(E)}\right)^2$ With constraint: $M_{2jets} = m_H(125 \text{GeV})$
- Global scaling:
 E₁₍₂₎ were scaled with same factor to let
 M_{2jets} = m_H(125GeV)

Same results obtained as the previous refined method. No more detail showed in this report.

Signal and Background Character

Fit Model

- Methodology objective: as much realism as possible within acceptable analysis complexity
- ► Additional information of $ZH, Z \rightarrow \nu\nu, H \rightarrow b\bar{b}$ obtained from *eeH*, $\mu\mu H$, and qqH where $H \rightarrow b\bar{b}$. Three signal strengthes are proportional to the $ZH, Z \rightarrow \nu\nu, H \rightarrow b\bar{b}$, by three assumptions:
 - 1: The uncertainties due to electroweak physics are assumed to be negligible.
 - ▶ 2: *ZZ* fusion contribution to *eeH* is negligible
 - 3: The correlations of signal strengthes of three channels are negligible
 - The additional constraint of $ZH, Z \rightarrow \nu\nu, H \rightarrow b\bar{b}$:

$$\frac{1}{\sqrt{\left(\frac{1}{\sigma_{eeH,H\to b\bar{b}}}\right)^2 + \left(\frac{1}{\sigma_{\mu\mu H,H\to b\bar{b}}}\right)^2 + \left(\frac{1}{\sigma_{qqH,H\to b\bar{b}}}\right)^2}} = 1/\sqrt{\left(\frac{1}{1.32\%}\right)^2 + \left(\frac{1}{0.99\%}\right)^2 + \left(\frac{1}{0.46\%}\right)^2} = 0.39\%$$

Higgs Boson Width

Numbers from Kaili's report

Channels Table_(2018.11)

All scaled to 240 GeV, 5.6ab-1

Signal		Precision	Signal			Signal		
Z	Н	Precision	Z	Н	Precision	Z	Н	Precision
	H->gg			H->WW		Н→үү, Zү		
	bb	1.32%		lvlv	9.52%	μμ+ττ		23.7%
ee	сс	13.5%	ee	evqq	4.56%	vv	γ γ	10.5%
	gg 7.2	7.22%		μvgg	3.93%	qq		9.84%
	bb	0.99%		lvlv	7.29%	vv	Zγ(qqγ)	15.7%
μμ	сс	9.54%	μμ	evaa	3.90%	vv	H(WW fusio	on)
	gg	5.01%	Í	μvqq	3.90%	vv	bb	3.00%
	bb	0.46%		aaaa	1.90%	Н→μμ		
qq	сс	11.1%		evqq	4.65%	gg		
	gg	3.64%	<u>vv</u> .	μvqq	4.14%	<u>ee</u>	1	
	bb	0.39%		lvlv	11.5%	μμ	μμ	17.1%
vv	сс	3.83%	gg	aaaa	1.75%	VV.	1	
	gg	1.47%	H->ZZ		Η→ττ			
H->I	nvisible		vv	μμqq	8.26%	ee		2.75%
qq		232%	vv	eeqq	40%	μμ]	2.61%
44	ZZ(vvvv)	77(unou) 370% H	μμ	μμ vvqq	7.32%	qq	ττ	
ee	22(000)		- P- P			-14		0.95%
μμ		245%	ZH bkg o	contribution	19.4%	vv		2.66%

16

Fit Model Cont'd

Binned log likelihood constructed as

$$\log L = \log P(data; \mu_{WWF}, \mu_{ZH}) - 0.5 \left(\frac{\mu_{ZH} - 1}{0.39\%}\right)^2 \quad (1)$$

$$\log P = \sum_{i} \log \operatorname{Poisson} \left(n_{i,data}; n_{i,bkg} + n_{i,ZH} \mu_{ZH} + n_{i,WWF} \mu_{WWF} \right)$$
(2)

where $n_{i,data}$ is the events number in bin *i*; $n_{i,bkg}$, $n_{i,ZH}$, $n_{i,WWF}$ the expected events number of backgrounds, $ZH, Z \rightarrow \nu\nu, H \rightarrow b\bar{b}$, and WW fusion, $H \rightarrow b\bar{b}$ in bin *i*; Backgrounds means all backgrounds (SM backgrounds and Higgs backgrounds) except the $ZH, Z \rightarrow \nu\nu, H \rightarrow b\bar{b}$.

Result

- 1D-fit: recoil mass
- > 2D-fit: recoil mass and θ

	$\mu_{WW { m fusion}} \ 1{ m D}$	$\mu_{WW { m fusion}} 2D$	$\mu_{ZH} \ 1 D$	μ_{ZH} 2D
Raw	3.9%	3.8%	0.33%	0.32%
Refined	3.1%	3.0%	0.30%	0.30%

- ▶ 0.1% improvement for 2D fit compared to 1D-fit.
- 0.8% improvement for refined recoil mass compared to raw recoil mass.
- Consistent with Kaili's result of κ framework.

Higgs width

►

- δ relative error
- fusion

$$\delta\Gamma_{fus} = \sqrt{\delta_{\sigma(fus,H\to bb)}^{2} + \delta_{\sigma(ZH,H\to bb)}^{2} + \delta_{\sigma(ZH,H\to WW)}^{2} + (2\delta_{\sigma(ZH)})^{2}}$$
$$= \sqrt{(3.0\%)^{2} + (0.28\%)^{2} + (1.0\%)^{2} + (2 \cdot 0.5\%)^{2}} = 3.3\%$$
$$ZZ$$
$$\delta\Gamma_{ZZ} = \sqrt{\delta_{\sigma(ZH,H\to ZZ)}^{2} + (2\delta_{\sigma(ZH)})^{2}}$$

$$\delta \Gamma_{ZZ} = \sqrt{\delta_{\sigma(ZH,H\to ZZ)}^2 + (2\delta_{\sigma(ZH)})^2}$$
$$= \sqrt{(5.1\%) + (2 \cdot 0.5\%)^2} = 5.2\%$$

Combination:

$$\Gamma=1/\sqrt{1/\Gamma_{ZZ}^2+1/\Gamma_{\rm fus}^2}=2.8\%$$

- See Kaili's form nubmers
- Consistent with Kaili's κ framework

Next work

Combined *WW* fusion, $H \rightarrow bb$ analysis with $ZH, Z \rightarrow \nu\nu, H \rightarrow bb$ analysis (Baiyu), to count on the correlations.

- ► $ZH, Z \rightarrow \nu\nu, H \rightarrow bb$ analysis were performed stand-alone.
- Cuts are optimized for each case.
- Fit on flavors tagging in *ZH* analysis.
- ► Fit on recoil mass and recoil polar angle in *WW* fusion analysis.

Possible solution:

- divide data into 3 categories:
 - Data fall only in $ZH, H \rightarrow bb$ window.
 - ▶ Data fall only in *WW* fusion, $H \rightarrow bb$ window.
 - Data fall in both windows.
- Fit both recoil mass and flavor tagging for each category, then combine.
- Difficulty: High dimensional PDF construction.

Interference is still big 'homework'.

- Inter. / WW fusion = 7%
- Not much effect on statistical error

Thanks!