

Optimizing Higgs factories by modifying the recoil mass

Ying-Ying Li Hong Kong University of Science and Technology

arXiv: 1709.08654 in collaboration with Jiayin Gu

2018 CEPC Workshop

measuring WW-fusion @ 240-250GeV

measuring WW-fusion @ 240-250GeV

Complementary to Higgs-strahlung process

kappa frame: contraint hWW coupling; input for the determination of higgs width;

$$\Gamma_h \propto \frac{\Gamma(h \to b\bar{b})}{\mathrm{BR}(h \to b\bar{b})} \propto \frac{\sigma(\nu\bar{\nu}h, h \to b\bar{b})}{\mathrm{BR}(h \to b\bar{b}) \cdot \mathrm{BR}(h \to WW^*)},$$

EFT frame: WW-fusion and the Higgs-strahlung process probe different combinations of EFT parameters.

~focus on H->bb channel~

Challenge of measuring@ 240-250GeV

Small rate, 6.72 fb @250GeV with unpolarised beam;

The rate of its dominant background Higgs-strahlung process
 with Z → $\nu \bar{\nu}$, 27 fb @250GeV with unpolarised beam;

Process	expected	pre-selection	Cut1	Cut2	Cut3	Cut4	Cut5	Cut6	Cut7	Cut8
$\nu \bar{\nu} H(\text{fusion})$	3426	2663	2070	2023	1577	1053	965	547	519	507
$\nu \bar{\nu} H(ZH)$	1.4×10^{4}	10918	8356	8356	7448	4860	4594	2574	2546	2546

arXiv:1403.7734

Challenge of measuring @ 240-250GeV

 observable to suppress bg: recoil mass, limited by the detector resolutions (especially for hadronic Higgs decay) and other effects, e.g. beam energy spread.

$$m_{\text{recoil}}^2 = s - 2\sqrt{s} E_h^{\text{rec}} + (m_h^{\text{rec}})^2 \,,$$

Optimisation and Fit

Collider scenarios:

CEPC: @240GeV, 5/ab data, unpolarised beam;

ILC: @250 GeV, 2/ab data, polarised beam P(e⁻, e⁺) = (±0.8,±0.3)

Detector simulation:

follow the ILD cards studied in <u>arXiv:1306.6329</u>

$$m_{\text{recoil}}^2 = s - 2\sqrt{s} E_h^{\text{rec}} + (m_h^{\text{rec}})^2 \,,$$

As Higgs mass uncertainty could be measured to around MeV, apply Higgs mass constraint?

$$\begin{split} (m_{\rm recoil}^E)^2 &= s - 2\sqrt{s} \, E_h^{\rm rec} + m_h^2 \,, \\ (m_{\rm recoil}^p)^2 &= s - 2\sqrt{s} \, \sqrt{m_h^2 + |\vec{p}_h^{\rm rec}|^2} + m_h^2 \,, \end{split}$$

7

Define:

With $|\vec{p}_h| \approx 51 \text{ GeV}$ and $E_h \approx 135 \text{ GeV}$ at $\sqrt{s} = 240 \text{ GeV}$, and $|\vec{p}_h| \approx 62 \text{ GeV}$ and $E_h \approx 140 \text{ GeV}$ at $\sqrt{s} = 250 \text{ GeV}$.

$$\delta_m / \delta_m^E / \delta_m^p \approx \begin{cases} -1.7 \,\delta_E - 0.32 \,\delta_p / -3.9 \,\delta_E / -0.57 \,\delta_p & \text{at } 240 \,\text{GeV} \\ -1.9 \,\delta_E - 0.46 \,\delta_p / -4.2 \,\delta_E / -0.83 \,\delta_p & \text{at } 250 \,\text{GeV} \end{cases}$$

- A Higgs-mass-window of 105GeV-135GeV is applied;
- Radius of R=1.5 is used in the jet clustering algorithm;
- Didn't apply energy correction due to detector geometry defects;
- m_{recoil}^{p} and m_{recoil} performance are better in constructing the recoil mass and will be our focus in our study.

- Didn't consider the interference between signal and background;
- Didn't include the effects of ISR photon;
- Rescaled $\nu \bar{\nu} b \bar{b}$ background to the total yield;
- m^p_{recoil} looks better in distinguishing hZ and WW-fusion distributions.

Happy to have the more dedicated simulations today from our experimental colleagues.

From Hao Liang's talk

Chi-square Fit

Fit to binned m_{recoil}^{p} and m_{recoil} distribution to extract the precisions of hZ and WW cross section.

CEPC 240 GeV, 5ab^{-1} , uncertainties normalized to SM predictions									
	3-]	param	eter fit		fixing $\sigma_{\rm bg}$				
$m_{\rm recoil}$	uncertainty	cor	relation ma	atrix	uncertainty	correl	lation matrix		
		σ_{hZ}	$\sigma_{WW \to h}$	$\sigma_{ m bg}$		σ_{hZ}	$\sigma_{WW \to h}$		
σ_{hZ}	0.024	1	0.28	-0.95	0.0077	1	-0.61		
$\sigma_{WW \to h}$	0.058		1	-0.47	0.051		1		
$\sigma_{ m bg}$	0.20			1					
	3-]	param	eter fit		fixing $\sigma_{\rm bg}$				
$m_{\rm recoil}^p$	uncertainty	cor	relation ma	atrix	uncertainty	correl	lation matrix		
		σ_{hZ}	$\sigma_{WW \to h}$	$\sigma_{ m bg}$		σ_{hZ}	$\sigma_{WW \to h}$		
σ_{hZ}	0.0071	1	0.098	-0.35	0.0066	1	-0.45		
$\sigma_{WW \to h}$	0.083		1	-0.87	0.041		1		
$\sigma_{ m bg}$	0.082			1					

• A little bit worse than the literature for fitting to m_{recoil} ;

• Focus on the comparison between m_{recoil}^{p} and m_{recoil} .

see Hao Liang's talk for a more dedicated simulation.

Kappa-framework

In the kappa framework

- As an independent parameter, improve the constraint on the hWW coupling by 20-30%;
- # Higgs width improved by 20-30%;

$$\Gamma_h \propto \frac{\Gamma(h \to b\bar{b})}{\mathrm{BR}(h \to b\bar{b})} \propto \frac{\sigma(\nu\bar{\nu}h, h \to b\bar{b})}{\mathrm{BR}(h \to b\bar{b}) \cdot \mathrm{BR}(h \to WW^*)},$$

Could preserve gauge invariance;

see Jiayin's talk

- A good parameterization of the the effects of new physics, easy to map to models that satisfies the assumptions of the framework;
- Take account of connections among different measurements: operators that contribute to both Higgs process and di-boson process could be constrained by the triple gauge coupling measurements, e.g. c_{ZZ}.

Focus on Higgs and di-boson measurements at 240GeV with the following assumptions:

- gauge invariance;
- CP even operators;
- Z pole observable and W mass to be SM-like;
- custodial symmetry conservation;
- no flavor violating Yukawa couplings;
- $hggand ht\bar{t}$ coupling cannot be independently constrained yet.

The relevant part in the Lagrangian are:

$$\begin{split} \mathcal{L}_{hVV} &= \frac{h}{v} \bigg[(1 + \delta c_W) \frac{g^2 v^2}{2} W^+_{\mu} W^{-\mu} + (1 + \delta c_Z) \frac{(g^2 + g'^2) v^2}{4} Z_{\mu} Z^{\mu} \\ &\quad + c_{WW} \frac{g^2}{2} W^+_{\mu\nu} W^{-\mu\nu} + c_{W\square} g^2 (W^-_{\mu} \partial_{\nu} W^{+\mu\nu} + \text{h.c.}) \\ &\quad + c_{gg} \frac{g^2_s}{4} G^a_{\mu\nu} G^{a\mu\nu} + c_{\gamma\gamma} \frac{e^2}{4} A_{\mu\nu} A^{\mu\nu} + c_{Z\gamma} \frac{e\sqrt{g^2 + g'^2}}{2} Z_{\mu\nu} A^{\mu\nu} \\ &\quad + c_{ZZ} \frac{g^2 + g'^2}{4} Z_{\mu\nu} Z^{\mu\nu} + c_{Z\square} g^2 Z_{\mu} \partial_{\nu} Z^{\mu\nu} + c_{\gamma\square} gg' Z_{\mu} \partial_{\nu} A^{\mu\nu} \bigg] . \\ \mathcal{L}_{hff} &= -\frac{h}{v} \sum_{f=t,c,b,\tau,\mu} m_f (1 + \delta y_f) \bar{f}_R f_L + \text{h.c.} \\ \mathcal{L}_{tgc} &= igs_{\theta_W} A^{\mu} (W^{-\nu} W^+_{\mu\nu} - W^{+\nu} W^-_{\mu\nu}) \\ &\quad + ig(1 + \delta g^2_1) c_{\theta_W} Z^{\mu} (W^{-\nu} W^+_{\mu\nu} - W^{+\nu} W^-_{\mu\nu}) \\ &\quad + ig[(1 + \delta \kappa_2) c_{\theta_W} Z^{\mu} (W^{-\nu} W^+_{\mu\nu} + (1 + \delta \kappa_\gamma) s_{\theta_W} A^{\mu\nu}] W^-_{\mu} W^+_{\nu} \\ &\quad + \frac{ig}{m_W^2} (\lambda_Z c_{\theta_W} Z^{\mu\nu} + \lambda_\gamma s_{\theta_W} A^{\mu\nu}) W^-_{\nu} W^+_{\mu\mu}, \end{split}$$

$$\begin{split} \mathcal{L}_{hVV} &= \frac{h}{v} \bigg[(1 + \delta_{\theta W}) \frac{g^2 v^2}{2} W_{\mu}^+ W^{-\mu} + (1 + \delta_{C_Z}) \frac{(g^2 + g'^2) v^2}{4} Z_{\mu} Z^{\mu} & \text{see Jiayin's talk} \\ &+ c_{VW} \frac{g^2}{2} W_{\mu\nu}^+ W^{-\mu\nu} + c_{V\Pi} g^2 (W_{\mu}^- \partial_{\nu} W^{+\mu\nu} + \text{h.c.}) \\ &+ c_{gg} \frac{g_s^2}{4} G_{\mu\nu}^a G^{a\,\mu\nu} + c_{\gamma\gamma} \frac{e^2}{4} A_{\mu\nu} A^{\mu\nu} + c_{Z\gamma} \frac{e\sqrt{g^2 + g'^2}}{2} Z_{\mu\nu} A^{\mu\nu} \\ &+ c_{ZZ} \frac{g^2 + g'^2}{4} Z_{\mu\nu} Z^{\mu\nu} + c_{Z\Pi} g^2 Z_{\mu} \partial_{\nu} Z^{\mu\nu} + c_{\sigma\Pi} gg' Z_{\mu} \partial_{\nu} A^{\mu\nu} \bigg] \\ \mathcal{L}_{hff} &= -\frac{h}{v} \sum_{f=t,c,b,\tau,\mu} m_f (1 + \delta y_f) \bar{f}_R f_L + \text{h.c.} \\ \mathcal{L}_{\text{tgc}} &= igs_{\theta_W} A^{\mu} (W^{-\nu} W_{\mu\nu}^+ - W^{+\nu} W_{\mu\nu}^-) \\ &+ ig(1 + \delta_{\theta T}^-) c_{\theta_W} Z^{\mu} (W^{-\nu} W_{\mu\nu}^+ - W^{+\nu} W_{\mu\nu}^-) \\ &+ ig(1 + \delta_{\theta T}^-) c_{\theta_W} Z^{\mu\nu} + (1 + \delta_{\theta \gamma}) s_{\theta_W} A^{\mu\nu} W_{\nu}^- W_{\mu\nu}^+ \\ &+ \frac{ig}{m_W^2} (\lambda_Z c_{\theta_W} Z^{\mu\nu} + \lambda_f s_{\theta_W} A^{\mu\nu}) W_{\nu}^{-\rho} W_{\rho\mu}^+, \\ \delta c_Z \,, \quad c_{ZZ} \,, \quad c_{Z\Pi} \,, \quad \bar{c}_{\gamma\gamma} \,, \quad \bar{c}_{Z\gamma} \,, \quad \bar{c}_{gg}^{\text{eff}} \,, \quad \delta y_c \,, \quad \delta y_b \,, \quad \delta y_{\tau} \,, \quad \delta y_{\mu} \,, \quad \lambda_Z \,, \end{split}$$

17

Table of measurement inputs

CEPC 240 GeV, $5 ab^{-1}$, unpolarized beams										
$e^{+}e^{-}$ -	$e^+e^- \to WW$									
$\sigma(e^+e^- \to hZ)$	0.50%		uncertainty	correl	lation m	atrix				
	$\sigma(hZ) \times BR$			$\delta g_{1,Z}$	$\delta\kappa_\gamma$	λ_Z				
$h ightarrow b ar{b}$	0.24% ★	$\delta g_{1,Z}$	6.4×10^{-3}	1	0.068	-0.93				
$h \to c \bar{c}$	2.5%	$\delta \kappa_{\gamma}$	$3.5 imes 10^{-3}$		1	-0.40				
h ightarrow gg	1.2%	λ_Z	$6.3 imes 10^{-3}$			1				
$h \to \tau \tau$	1.0%									
$h \to WW^*$	1.0%									
$h \to Z Z^*$	4.3%	Angula	ar observables	in						
$h ightarrow \gamma \gamma$	9.0%	$e^+e^- \to hZ, h \to b\bar{b}, Z \to \ell^+\ell^-$								
$h ightarrow \mu \mu$	12%	are also included.								
$h \to Z\gamma$	25%									

see Kaili's talk for updated number

• For the \star , Z invisible decay mode contribution is removed;

Expected precisions from CEPC pre-CDR, need to be updated.

- Total rate fit;
- Fit to the extracted precisions of cross sections without taking into account of their correlations.
- Fit to binned distribution: could be better by a factor as large as10%

Z decay mode	ΔM_H (MeV)	$\Delta\sigma(ZH)/\sigma(ZH)$	$\Delta g(HZZ)/g(HZZ)$
ee	14	2.1%	
$\mu\mu$	6.5	0.9%	
$ee + \mu\mu$	5.9	0.8%	0.4%
q ar q		0.65%	0.32%
$ee + \mu\mu + q\bar{q}$		0.51%	0.25%

<u>CEPC CDR</u>

 Hadronic channel gains by larger decay branching ratio, suffers from jet resolution, etc.

 $E_Z \sim 104.7 \text{ GeV}, |p_Z| \sim 51.8 \text{ GeV}$

$$\delta_m \ / \ \delta_m^E \ / \ \delta_m^p \approx \begin{cases} -0.91 \, \delta_E - 0.17 \, \delta_p \ / \ -1.6 \, \delta_E \ / \ -0.39 \, \delta_p \\ -0.99 \, \delta_E - 0.25 \, \delta_p \ / \ -1.8 \, \delta_E \ / \ -0.56 \, \delta_p \end{cases} \quad \text{at } 240 \, \text{GeV}$$

 larger deviations of measured energy and momentum from the true ones, the invariant mass further away from its true value;

 Comparison shows the effect of combinatory problem for hadronically Higgs decay;

Figure 8: The distributions of m_{recoil} and m_{recoil}^p for $W^+W^- \to q\bar{q}q\bar{q}$ at CEPC 240 GeV with a Z-mass-window cut of 70 GeV $< m_{q\bar{q}} < 110$ GeV (left panel) or 80 GeV $< m_{q\bar{q}} < 95$ GeV (right panel).

Summary and discussions

We studied how to improve measurements where recoil mass of hadronic events are crucial, e.g.WW-fusion and ZH process;

- We also did kappa-frame and EFT fit including the WW-fusion information, especially including the kinematics distribution information.
- Machine learning, thorough kinematic fit?
 —Easy physical understanding of these more complicated method, indication of detector improvement to balance energy resolution/momentum resolution.

Backup

measuring WW-fusion process

Complementary to Higgs-strahlung process

kappa frame: contraint hWW coupling; input for the determination of higgs width;

$$\Gamma_h \propto \frac{\Gamma(h \to bb)}{\mathrm{BR}(h \to b\bar{b})} \propto \frac{\sigma(\nu\bar{\nu}h, h \to bb)}{\mathrm{BR}(h \to b\bar{b}) \cdot \mathrm{BR}(h \to WW^*)},$$

EFT frame: WW-fusion and the Higgs-strahlung process probe different combinations of EFT parameters: e.g. cww= czz+ \alpha cz\gamma

could measure czz via ZH, and cz\gamma via WW

Optimisation and Fit

Collider scenarios:

CEPC: @240GeV, 5/ab data, unpolarised beam;

ILC: @250 GeV, 2/ab data, polarised beam P(e-, e+) = (±0.8,±0.3)

Detector simulation:

follow the ILD cards studied in <u>arXiv:1306.6329</u>, tagging efficiency:

Challenge of measuring @ 240-250GeV

-Small rate, 6.72 fb @250GeV with unpolarised beam;

—The rate of its dominant background Higgs-strahlung process with Z decay to vv, 27 fb @250GeV with unpolarised beam;

Process	expected	pre-selection	Cut1	Cut2	Cut3	Cut4	Cut5	Cut6	Cut7	Cut8
$\overline{\nu\bar{\nu}H(\text{fusion})}$	3426	2663	2070	2023	1577	1053	965	547	519	507
$\overline{\nu\bar{\nu}H(ZH)}$	1.4×10^4	10918	8356	8356	7448	4860	4594	2574	2546	2546
$ u_l ar u_l b \overline{b}$	3.05×10^4	23012	1040	1040	878	421	390	224	193	187
$ u_l ar u_l q ar q$	1.19×10^{5}	88998	5548	5545	4714	2408	2271	15	9	9
$q \bar{q} l^+ l^-$	2.99×10^{5}	153540	6196	5922	1760	588	508	65	38	36
q ar q l u	1.73×10^{6}	1.15×10^{6}	181973	177193	134047	22654	20533	111	73	65
q ar q q ar q	3.91×10^{6}	1.15×10^{6}	782	728	3	1	0	0	0	0
$q\bar{q}$	26.02×10^6	17.27×10^{6}	852321	794892	1507	1199	683	289	152	152
BG	32.104×10^{6}	19.846×10^{6}	1.047×10^6	985320	142909	27271	24385	1404	465	449

arXiv:1403.7734

I	ILC 250 GeV, $2 ab^{-1}$, uncertainties normalized to SM predictions									
	3-]	param	eter fit		fixing $\sigma_{\rm bg}$					
$m_{ m recoil}$	uncertainty	cor	relation ma	atrix	uncertainty	correl	lation matrix			
		σ_{hZ}	$\sigma_{WW \to h}$	$\sigma_{ m bg}$		σ_{hZ}	$\sigma_{WW o h}$			
σ_{hZ}	0.049	1	0.47	-0.97	0.011	1	-0.69			
$\sigma_{WW \to h}$	0.063		1	-0.63	0.045		1			
$\sigma_{ m bg}$	0.31			1						
	3-]	param	eter fit		fi	xing $\sigma_{ m l}$	og			
$m_{\rm recoil}^p$	uncertainty	cor	relation ma	atrix	uncertainty	correl	lation matrix			
		σ_{hZ}	$\sigma_{WW \to h}$	$\sigma_{ m bg}$		σ_{hZ}	$\sigma_{WW \to h}$			
σ_{hZ}	0.010	1	0.21	-0.51	0.0088	1	-0.46			
$\sigma_{WW \to h}$	0.059		1	-0.83	0.033		1			
$\sigma_{ m bg}$	0.088			1						

$\frac{\sigma_{\nu\bar{\nu}h}}{\sigma_{\nu\bar{\nu}h}^{\rm SM}}\Big|_{240\,{\rm GeV}}^{\rm unpolarized} = 1 + 1.7\,\delta c_Z + 1.3\,c_{ZZ} + 2.9\,c_{Z\Box} + 0.051\,c_{Z\gamma} + 0.14\,c_{\gamma\Box}$

 $+ 0.23 \,\delta c_W - 0.0026 \,c_{WW} - 0.065 \,c_{W\Box}$.

	CEPC 240 GeV (with unpolarized beams) m_{recoil}										
					bin ind	ex [GeV]					
	75	80	85	90	95	100	105	110	115	130	
σ_{SM} [fb]	0.15	0.18	0.38	0.78	1.2	1.3	1.1	0.74	0.47	0.34	
δc_Z	0.97	1.4	1.6	1.7	1.8	1.9	1.9	1.9	1.8	1.9	
c_{ZZ}	0.50	0.95	1.1	1.3	1.3	1.4	1.4	1.4	1.4	1.4	
$c_{Z\square}$	1.5	2.2	2.6	2.9	3.0	3.0	3.2	3.1	3.1	3.0	
$c_{Z\gamma}$	0.021	0.035	0.044	0.051	0.052	0.054	0.056	0.056	0.055	0.055	
$c_{\gamma \Box}$	0.075	0.11	0.13	0.14	0.15	0.15	0.15	0.15	0.15	0.15	
δc_W	0.93	0.62	0.37	0.22	0.15	0.13	0.14	0.17	0.20	0.29	
c_{WW}	-0.011	-0.0066	-0.0038	-0.0023	-0.0016	-0.0013	-0.0013	-0.0016	-0.0019	-0.0023	
$c_{W\Box}$	-0.30	-0.18	-0.11	-0.060	-0.038	-0.032	-0.033	-0.036	-0.037	-0.049	

	CEPC 240 GeV (with unpolarized beams) m_{recoil}^p									
				bin ind	ex [GeV]					
	75	80	85	90	95	100	105	115		
σ_{SM} [fb]	0.22	0.24	0.59	1.7	2.4	0.99	0.32	0.11		
δc_Z	0.95	1.4	1.7	1.8	1.9	2.0	1.8	1.4		
c_{ZZ}	0.54	0.99	1.2	1.3	1.4	1.4	1.4	1.0		
$c_{Z\square}$	1.6	2.3	2.6	3.0	3.2	3.3	3.1	2.0		
$c_{Z\gamma}$	0.021	0.035	0.045	0.053	0.056	0.059	0.054	0.044		
$c_{\gamma\square}$	0.075	0.11	0.13	0.15	0.16	0.16	0.15	0.11		
δc_W	0.92	0.61	0.33	0.14	0.075	0.11	0.33	0.99		
c_{WW}	-0.0095	-0.0062	-0.0034	-0.0014	-0.00082	-0.0012	-0.0025	-0.0075		
$c_{W\Box}$	-0.28	-0.17	-0.092	-0.037	-0.019	-0.025	-0.056	-0.13		

$$\begin{split} \delta c_W &= \delta c_Z + 4 \delta m ,\\ c_{WW} &= c_{ZZ} + 2 s_{\theta_W}^2 c_{Z\gamma} + s_{\theta_W}^4 c_{\gamma\gamma} ,\\ c_{W\Box} &= \frac{1}{g^2 - g'^2} \left[g^2 c_{Z\Box} + g'^2 c_{ZZ} - e^2 s_{\theta_W}^2 c_{\gamma\gamma} - (g^2 - g'^2) s_{\theta_W}^2 c_{Z\gamma} \right] ,\\ c_{\gamma\Box} &= \frac{1}{g^2 - g'^2} \left[2 g^2 c_{Z\Box} + (g^2 + g'^2) c_{ZZ} - e^2 c_{\gamma\gamma} - (g^2 - g'^2) c_{Z\gamma} \right] , \end{split}$$

$$\delta g_{1,Z} = \frac{1}{2(g^2 - g'^2)} \left[-g^2(g^2 + g'^2)c_{Z\square} - g'^2(g^2 + g'^2)c_{ZZ} + e^2g'^2c_{\gamma\gamma} + g'^2(g^2 - g'^2)c_{Z\gamma} \right],$$

$$\delta \kappa_{\gamma} = -\frac{g^2}{2} \left(c_{\gamma\gamma}\frac{e^2}{g^2 + g'^2} + c_{Z\gamma}\frac{g^2 - g'^2}{g^2 + g'^2} - c_{ZZ} \right).$$
(A.6)

$$\bar{c}_{\gamma\gamma} \simeq \frac{c_{\gamma\gamma}}{8.3 \times 10^{-2}}, \qquad \bar{c}_{Z\gamma} \simeq \frac{c_{Z\gamma}}{5.9 \times 10^{-2}}, \qquad \bar{c}_{gg} \simeq \frac{c_{gg}}{8.3 \times 10^{-3}}.$$

$$\frac{\Gamma_{gg}}{\Gamma_{gg}^{\rm SM}} \simeq 1 + 2\bar{c}_{gg}^{\rm eff} \simeq 1 + 2\bar{c}_{gg} + 2.10\,\delta y_t - 0.10\,\delta y_b\,,$$

Z decay mode	ΔM_H (MeV)	$\Delta\sigma(ZH)/\sigma(ZH)$	$\Delta g(HZZ)/g(HZZ)$
ee	14	2.1%	
$\mu\mu$	6.5	0.9%	
$ee + \mu\mu$	5.9	0.8%	0.4%
qar q		0.65%	0.32%
$ee + \mu\mu + q\bar{q}$		0.51%	0.25%

