

1

Mini TPC @ Saclay

Boris Tuchming CEA Irfu/Dphp Paris-Saclay (France)

Outline

- Ion back flow issue in TPC for future e+e- collider
- Description of the TPC test-bench project
- Running TPC
- First results
- Summary/Todo

Ion-Back-Flow issue at e-+e- collider

- Time Projection Chamber suffers from spatial charge built up
 - induced by
 - ions from primary ionization
 - secondary (amplification) ion back-flow (IBF)
- Spatial charge yields distortions for track reconstruction
- Details upon spatial charge depend upon
 - · beam bunch structure, beam background, luminosity
 - Magnetic field
 - Detector: amplification gain, Ion back flow rate
 - Gating
- Issue is present for all projects of future e+e- collider
 - CEPC, ILC, FCC-ee
 - Collaboration possible between teams involved in any of these projects

Charge space in TPC at e+e- collider

X 2 to account

At Saclay MC study to estimate (primary) space charge at FCC-ee Main source identified as hadronic Z at $L=10^{36}$ cm²s⁻¹

- primary ions
- secondary (amplification) ion back-flow
 - Here assume (agressive) 1 electron \rightarrow 1 ion back flow

Tracking distortions

MC-based estimate of distortions

- Space charge induced by
 - primary ions
 - secondary (amplification) ion back-flow
 - Here assume (agressive) 1 electron \rightarrow 1 ion back flow

up to 20 μm distortions

Project at Saclay

- CEA Saclay
- Test TPC tracking reconstruction performance in the presence of spatial charge using cosmic data.
 - Spatial charge induced by
 - primary ions
 - secondary (amplification) ion back-flow (IBF)
- Compare to simulation
- The primary goal is not to measure IBF property of the detector
 - We want to measure tracking performance
 - We need to monitor the spatial charge in the TPC.

Mini-TPC project

Goal: test TPC tracking performance in the presence of space charge to check/tune simulation of space charge effect

- Recycle existing chamber present at Saclay
 - Use resistive micromegas module as TPC pads
 - Detector+electronics (AFTER)+DAQ developed for T2K and ILC-TPC
 - New TPC end-plate to plug the micromegas device
- Transparent viewport to send UV-rays through the chamber
 - UV rays yield photo-electrons at the cathode level
 - Photo-electrons drift toward micromegas
 - Micromegas amplification yields ion back-flow in drift space
- Measure tracking performance with cosmic muons
 - Trigger with 2 scintillators
 - Use 3 large area micromegas chambers as hodoscope.

Mini-TPC project

Goal: test TPC tracking performance in the presence of space charge to check/tune simulation of space charge effect

- Recycle existing chamber present at Saclay
 - Use resistive micromegas module as TPC pads
 - Detector+electronics (AFTER)+DAQ developed for T2K and ILC-TPC
 - New TPC end-plate to plug the micromegas device
- Transparent viewport to send UV-rays through the chamber
 - UV rays yield photo-electrons at the cathode level
 - Photo-electrons drift toward micromegas
 - Micromegas amplification yields ion back-flow in drift space
- Measure tracking performance with cosmic muons
 - Trigger with 2 scintillators
 - Use 3 large area micromegas chambers as hodoscope.

Mini-TPC project

Goal: test TPC tracking performance in the presence of space charge to check/tune simulation of space charge effect

- Recycle existing chamber present at Saclay
 - Use resistive micromegas module as TPC pads
 - Detector+electronics (AFTER)+DAQ developed for T2K and ILC-TPC
 - New TPC end-plate to plug the micromegas device
- Transparent viewport to send UV-rays through the chamber
 - UV rays yield photo-electrons at the cathode level
 - Photo-electrons drift toward micromegas
 - Micromegas amplification yields ion back-flow in drift space
- Measure tracking performance with cosmic muons
 - Trigger with 2 scintillators
 - Use 3 large area micromegas chambers as hodoscope.

Scint 1

MG L

Mini-TPC project

Goal: test TPC tracking performance in the presence of space charge to check/tune simulation of space charge effect

- Recycle existing chamber present at Saclay
 - Use resistive micromegas module as TPC pads
 - Detector+electronics (AFTER)+DAQ developed for T2K and ILC-TPC
 - New TPC end-plate to plug the micromegas device
- Transparent viewport to send UV-rays through the chamber
 - UV rays yield photo-electrons at the cathode level
 - Photo-electrons drift toward micromegas
 - Micromegas amplification yields ion back-flow in drift space
- Measure tracking performance with cosmic muons
 - **Trigger with 2 scintillators**
 - Use 3 large area micromegas chambers as hodoscope.

Scint 1

MG L

AG L

AG L

Scint 2

Mini-TPC test bench

- TPC:
 - ∆z TPC =48cm
 - D = 50 cm
- Micromegas (ILC) modules:
 - Resistive layer
 - 17cm * 23 cm²
 - 1748 (72*24) channels
- 3 Multigen chambers
 - 50x50 cm² 1024x1024 channels

TPC assembly

- Endplate designed with two CaF₂ viewport of diameter 3.8cm
- Assembled Winter 16
- First Data in September 16

Running TPC

- Managed to take first cosmic data in September 16
 - 95% Argon + 5% Iso-C₄H₁₀

hADC 0 1595

Hodoscope « Multigen » chambers

- Use three micromegas chambers as developed for M-Cube project = large area micromegas
 - 50 x 50 cm² coverage.
 - Two layers of orthogonal read-out strips
 - X x Y reconstruction.
 - 1024 strips x 1024 strips (Pitch: 486 μm.)
 - Genetic "multiplexing"
 - (Procureur et al, NIM A 729 (2013) 888)
 - 1024 strips \rightarrow 61 readout channels
 - 122 channels per chamber
 - Somewhat complicate pattern recognition
 - Very large capacitance= very noisy
 - Sensitive to outside noise
 - Cross-talks between channels
 - "Common noise filtering" needed
 - ~500 μ m resolution

Electronics and DAQ

- Electronics front-end and back-end designed for ILC-TPC prototypes
 - After electronics (originally designed for T2K)
 - Can handle a few Hz event rates
 - Compacted to fit TPC modules → 24 ASICs on module
 - see P. Baron et al., IEEE TNS vol. 55, Issue 3, Part 3, June 2008, pp. 1744 1752. DOI:10.1109/TNS.2008.924067

1728 pad detector module

Electronics and DAQ

- Electronic front-end and back-end designed for ILC-TPC prototypes
 - After electronics (originally designed for T2K)
 - Can handle a few Hz event rates
 - Compacted to fit TPC modules \rightarrow 24 ASICs on module
 - see P. Baron et al., IEEE TNS vol. 55, Issue 3, Part 3, June 2008, pp. 1744 1752. DOI:10.1109/TNS.2008.924067
 - Back-end prototypes designed for ILC to handle 12 modules
 - see D. Attié et al., 18th IEEE-NPSS Real Time Conference, Berkeley, CA, 2012, pp. 1-5. doi: 10.1109/RTC.2012.6418152
 - DAQ software from T2K test prototypes

LC-TPC prototype at Desy with 7 modules on test-beam (2015)

TPC+Multigen data

- Start data acquisition in January 2017
 - Use 95% Argon + 5% Isobutane
 - TPC
 - Mesh at -420 V (128 µm GAP)
 - Drift -10 kV / 48 cm \rightarrow ~200 V/cm
 - Multigen chambers (MG)
 - strips at ~ 480 V
 - Typical trigger rate ~ 1.5 Hz
 - Typical rate for good events in 3 Multigen and TPC volume ~ 0.3 Hz
- Initial Plan:
 - 1) Take data in steady/stable state
 - 2) Measure resolution
 - 3) Turn-on UV light
 - measure resolution, space charge
 - 4) Compare to simulation
- Real world
 - Some issues regarding stability/gas/ noise
 - Lack of man power for the reconstruction and analysis
 - Reconstruction postponed till post-doc or PhD student joined the group \rightarrow Arrival of Haiyun Wang (IHEP) in November 17 for 6 month

Alignment

- Perform alignment using as input lengths
 - Multigen pitch = 486.26 microns
 - Pad geometry
 - T0 of TPC fixed
- Quick fit
 - Define track from 2 hits from outermost Multigen (Layer 1 and 3)
 - Compute residuals for the hits in TPC and MG Layer 2
 - Fit (z,x,y) of 3 Multigens
 - Fit 1 rotation (around Y) of TPC relative to Multigens
 - Fit drift velocity

Monitoring Data: drift velocity

Methods

- Several possible methods to measure drift velocity.
 - Eg: study time for tracks going through anode or cathode of TPC
- Most sensitive: Use overall alignment including Multigen detectors. Fit drift velocity to minimize residuals
- Results
 - Large variations observed
 - Smaller variations with higher gas flow
 - 10 % variation over 6 month between april 2017 – July
 - Two local minima in drift speed July 2017, July 2018.
- Not understood yet
 - seasonal variation ?
 - H20 from outside humidity coming through PCB ??

drift_speed__cmmus_:times (times>0 && times<5.76911e+07&&defaultMG&&drift_speed__cmmus_>-999

CEPC Workshop - TPC test-bench at Saclay

Data quality: attachment

- Main issue has been e- attachment in gas
 - Measured in charge deposit vs drift time
- Possible candidate: presence of O2
 - TPC outgasing ?
 - gas leak ? gas quality ?
 - pipes (~1m of polyurethane and ~10m of polyamide 4-6 mm) ?
- Monitoring:
 - typical length of absorption was ~ 35 cm for while
 - Absorption depends on gas flow
 - 7 l/hr in TPC \rightarrow ~35cm
 - 10 l/hr in TPC \rightarrow ~75cm
 - 15 l/hr in TPC \rightarrow ~100cm
 - NB TPC volume ~ 100 l
- Last month:
 - a leak found using a gas sniffer
 - Plan to repair next month

Issues with electronics/power supply

- High Voltage power supply log over last year
 - Sizable current seen by power-supply when the "gain" is low
 - Note that this current is +/- independent of the High voltage setting
 - Charge build-up (??) between micromegas mesh and anodes that changes the gain ?
 - Some work with grounding strip in June. This seems to improved things now. Got stable gain in July

CEPC Workshop - TPC test-bench at Saclay

Tracking

November 2018, B. Tuchming

- **Multigen resolution**
- Residual: Layer 2 vs extrapolation from (Layer1,Layer3)
- Here we see convoluted resolution between L1,L2,L3

- Important Non Gaussian tail
- Individual Multigen FWHM
 - ~ 800 µm in X
 - ~ 1100 μm in Y

Z

TPC Pad resolution

- Hit reconstruction
 - Firstly, use simple algorithm: charge-weighted average coordinate for each row j → hit position x_j
- Residual relative to multigen track
 - $\operatorname{Res}_{j} = \mathbf{x}_{j} \mathbf{x}_{\operatorname{trackat row } j}$
 - Problem: wide distribution because of poor multigen resolution
- Use double difference
 - Res_{j+1} - Res_{j} = (x_{j+1} - x_{j}) ($x_{\text{track } j+1}$ - $x_{\text{track } j}$)
 - This cancel multigen resolution
 - The term (x_{track j+1}-x_{track j}) is needed to cancel angular effect

• Fit Gaussian resolution from double difference /sqrt(2), in bins of z

CEPC Workshop - TPC test-bench at Saclay

- Resolution vs z
 - Fit with standard form but adding an absorption (e- capture) term
 - Find similar absorption length as when studying charge vs time
- Resolution at z=0 ~ 200 µm.
 - Worse than $\sim 60 \ \mu m$ obtained with state of the art hit reconstruction (based on pad response function) on test beam data by Colas et al.

- Resolution vs z
 - Fit with standard form but adding an absorption (e- capture) term
 - Find similar absorption length as when studying charge vs time
- Resolution at z=0 ~ 200 µm.
 - Worse than $\sim 60 \ \mu m$ obtained with state of the art hit reconstruction (based on pad response function) on test beam data by Colas et al.
- Extrapolate resolution function
 - No more e⁻ capture
 - In B field

- Resolution vs z
 - Fit with standard form but adding an absorption (e- capture) term
 - Find similar absorption length as when studying charge vs time
- Resolution at z=0 ~ 200 µm.
 - Worse than $\sim 60 \ \mu m$ obtained with state of the art hit reconstruction (based on pad response function) on test beam data by Colas et al.
- Extrapolate resolution function
 - No more e⁻ capture
 - In B field
- More recent data:
 - higher gas flow
 - better gas (?)
 - smaller dependence of resolution vs drift

Pad resolution using fitted track

Haiyun Wang

- Haiyun Wang (IHEP) at Saclay Nov 2017 \rightarrow April 2018
 - worked on track fitting algorithm using standalone TPC
 - First step: hits defined as charge-weighted average
 - Use fitted TPC track as reference to compute residual
 - Obtain similar result as double difference method

Fit function: New data(2018.03) analyzation $C_d^2 \cdot z$ transverse diffusion constant Neff exp(T_{2} spatial resolution at Z = 0, absorbtion length Nett, number of effective elctrons over the length of a pad resolution along Z/drift time rows: 12,13,14,15,16,17,18 angle: $\leq \pm 5$ Data of 2018.03 v.s. data of 2017.10 2018.03 resolution along drift distance 1200 38.61/12 197.2 ± 1.921 Diffusion(um/sgrt/cm)) 1000 540.8 ± 2.918 37 ± 0 64.27 ± 1.286 $\sigma_0 \sim 197 \text{um}$ 200 drift distance/cm 1200 2017.10 $\chi^2/ndt = \sigma_0 (\mu m)$ 158.6 ± 1.595 1000 Diffusion(um/sgrt[cm]) 476.9 ± 1.776 37 ± 0 400 $\sigma_0 \sim 158 \text{um}$ 45 drift distance/cm 6/6/18

Improving resolution

- Study Pad Response Function to determine the hits
- PRF need to be determined as a function of drift distance z

Pad resolution using fitted track

CEA - Saclay

- Improved results using PRF.
 - However not fully understood
 - More studies needed

Haiyun Wang June 18

Summary

- TPC test-bench at Saclay
 - Project to study ion back flow effects on track reconstruction
 - Small team of people <0.5 FTE
 - Progress could be faster with students or Post-doc
- Test bench working and taking cosmic data for 2 years
 - This is also a good test of TPC module stability over time.
- Several stability issues in the past years.
 - gas leak/purity, gain stability and grounding of detector.
- Track reconstruction not yet as good as expected
 - Pad Response Function only at preliminary level
 - More work on tracking to get better tracking performance
 - Need to understand tracking performance vs time, etc
- Next steps
 - Understand tracking and achieve design performance
 - Turn-on UV light, measure performance, measure space charge
 - Simulate the test-bench.
 - Compare data to simulation

Support

Monitoring data: TPC sensitivity to pressure

13/12

- So far: P and T collected from meteo-France Orly station
- Would be good to have P,T in-situ probes!!

Two Viewports

- Solid angle effect+UV absorption+ Quantum efficiency= non homogeneous photo-electrons yield
- Two viewports for better control on photon-electron yield homogeneity
- Will use CaF₂ viewport of diameter 3.8cm

Multigen detector

- Genetic "multiplexling"
 - (Procureur et al, NIM A 729 (2013) 888)
 - 1024 strips \rightarrow 61 readout channels
 - ~17 strips connected together.
 - 50 x 50 cm² coverage with 122 channels !

However

- Very large capacitance
 - Sensitive to outside noise
 - Cross-talks between channels
 - "Common noise subtraction" needed
- Somewhat complicate pattern recognition
 - Connections are optimized so that three fired channels uniquely defines three possible adjacent strips.
 - Need to test all possibilities to find physical clusters of hits
 - Any mistake in channel mapping kills reconstruction

Noise in Hodoscope

Struggled against noise in Hodoscope for a while

Two kind of noises:

- Common noise due to external source
 - Seen in all strips of a given ASIC
 - Reduced with proper grounding.

- Auto-correlated noise due to the signal itself = cross-talk
 - Seen in all strips of a given ASIC

Common noise subtraction

• Common noise subtraction technique seems to work to remove signal-induced noise. X-layer

after

November 2018, B. Tuchming

CEPC Workshop - TPC test-bench at Saclay

Geometry

- 386 μm wide resistive strips (1MQ/ $_{\rm D})\,$ along Y

Tomography tests

- Insert object between L2 and TPC
 - Try to observe overdensities by looking at deviation due to multiple scattering
 - Roy inserted wrenches on 06/04
 - ~ 0.5 cm thickness of iron
 - I added chevron-shapped lead tile on 06/05
 - ~ 3.5 cm thickness of lead at max

Tomography results

Compute angle α (L2L3, TPC)

- Signal
 - Require large deviation angle between segments
 - $\alpha = \operatorname{sqrt}(\Delta \theta^2 + \Delta \Phi^2) > 0.02$
 - Require segments to point to same vertex in x,z ~1cm
- Background= blank image
 - Reverse angle cut $\alpha = sqrt(\Delta\theta^2 + \Delta\Phi^2) < 0.01$

TTP(3 Ζ

November 2018, B. Tuchming

CEPC Workshop - TPC test-bench at Saclay

Wrenches

signal bkg subtracted

