Fast Luminosity Monitoring at SuperKEKB

Presented by Chengguo PANG LAL-Orsay, Univ. Paris-Sud, IN2P3/CNRS

on behalf of LumiBelle2 and ZDLM groups CEPC workshop, IHEP, China 14/11/2018

Unravelling the mysteries of matter, life and the universe.

Contents

- ◆ Collaboration
- Introduction
- Phase-2 commissioning results
 - Background study
 - Luminosity monitoring
- + Highlight results
 - Dithering feedback test
 - Vertical offset scan
- Conclusion and prospects

Collaboration

P. Bambade, S. Di Carlo, D, Jehanno, C. PANG, C. Rimbault, V. Kubytskyi, Y. Peinaud LAL, 91898, Orsay, France

Y. Funakoshi, T. Kawamoto, M. Masuzawa, M. Tobiyama, S. Uehara KEK 305-0801 Tsukuba, Japan

> A.S. Fisher, M.K. Sullivan, D. Brown SLAC, 94025 Menlo Park, U.S.A

> > U. Wienands ANL 60439 Argonne, U.S.A

SuperKEKB & Belle II

- Luminosity monitoring & tuning
- Beam induced backgrounds monitoring
- 1) Phase 1 : 2016/Feb. ~ Jun.
 - single beam commissioning, vac. scrubbing
 - no luminosity (no final focus), no detector
- 2) Phase 2 : 2018/Mar. ~ July
 - colliding beam commissioning, no vertex detector
- 3) Phase 3 : from 2019/Mar. ~?
 - full luminosity for physics running

naramatara	KEKB		SuperKEKB		unito	
parameters	LER	HER	LER	HER	units	
Beam energy	rgy E _b		8	4	7.007	GeV
Half crossing angle	φ	11		41.5		mrad
# of Bunches	N	1584		2500		
Horizontal emittance	٤x	18	24	3.2	4.6	nm
Emittance ratio	к	0.88	0.66	0.27	0.25	%
Beta functions at IP	βx [*] /βy [*]	1200/5.9		32/0.27	25/0.30	mm
Beam currents	lb	1.64	1.19	3.6	2.6	А
beam-beam param.	ξy	0.129	0.090	0.088	0.081	
Bunch Length	σz	6.0	6.0	6.0	5.0	mm
Horizontal Beam Size	σ×*	150	150	10	11	um
Vertical Beam Size	σ y*	0.94		0.048	0.062	um
Luminosity	L	2.1 x 10 ³⁴		8 x 10 ³⁵		cm ⁻² s ⁻¹

Luminosity: increased by a factor of 40

 $\beta_y = 0.3 \text{mm}$ half crossing angle : $\phi = d \sim 300 \ \mu\text{m}$

mitigates beam-beam and hour-glass effects...

Why fast luminosity monitoring ?

C. G. PANG (LAL)

Fast luminosity monitoring

- Goal: fast relative luminosity monitoring based on radiative Bhabha scattering as input to SuperKEKB IP dithering orbit feedback system (and for machine tuning and backgrounds studies)
 - Train Integrated Luminosity (TIL): △L/L ~ 1% @ 1 kHz
 - Bunch Integrated Luminosity (BIL), 2500 bunches/train, 4 ns, ~ 1% @ few Hz

Radiative Bhabha process at vanishing photon scattering angle

- Rate proportional to Luminosity
- Large cross section ~ 0.2 barn

Two complementary techniques from LAL and KEK:

- LumiBelle2 (LAL): sCVD diamond detector ~ 4.5x4.5x0.5/0.14 mm³
- ZDLM (KEK) Cherenkov detector + scintillator + PMT

Two commonly optimised locations:

- → 29m downstream of IP in HER → Bhabha photons

Detectors

sCVD diamond detector

40459

- Wide band-gap (5.5 eV) semiconductor devices;
- Strong atomic bond (radiation resistant);
- Fast charge/current amplifiers
- High drift velocity (fast detector).

LumiBelle2

ZDLM

Data acquisition system (LumiBelle2)

C. G. PANG (LAL)

Data acquisition system (ZDLM)

Prototype of TDC module

ZDLM:

Luminosity measurement with pulse integration

- Integration/counting
- Trigger mode
- Analog
- TIL and BIL

Signal sources

Background study

First collision observed @ 04-25

- Both luminosity monitoring and beam-beam deflection technologies are used to search for collision with horizontal, vertical and longitudinal scans
- \bullet Both LumiBelle2 and ZDLM observed the Bhabha scattering signal

Luminosity signals cross check

• Cross check among LumiBelle2, ZDLM and ECL

*ECL is the Belle II absolute measurement of luminosity, based on recording coincident signals from backto-back Bhabha events in the angular acceptance of the forward ("end-caps") calorimeters.

- ➡ Signals between different channels of LumiBelle2 are proportional to each other
- ➡ Signals from LumiBelle2 are proportional to signals from ZDLM
- ➡ LumiBelle2 HER signals are weaker, consistent with others in principle
- LumiBelle2 and ZDLM are proportional to ECL luminosity signals

Luminosity signals vs ECL

- LumiBelle2 and ZDLM agree well with ECL after normalisation
- LER is much more precise than HER
- Much more statistics than ECL: 2~5 orders of magnitude for HER→LER
 - LumiBelle2 and ZDLM rates depend on channels/configuration
 - LumiBelle2 signals have some sensitivity to vertical angle @ IP
- Relative luminosity measurements

Bunch-by-bunch luminosity

Online display

Bunch integrated luminosity [V]

Dithering feedback algorithm

- Modulate the LER beam position at IP at a known frequency (79Hz) with horizontal orbit bump
- Observe the luminosity modulation with a lock-in amplifier
- Luminosity reaches maximum when output of lock-in amplifier are minimum
- Newton method search for zero are used for feedback control algorithm

Luminosity signals @ 1kHz

C. G. PANG (LAL)

Dithering feedback test

Dithering feedback test

• Feedback test with deliberately introduced horizontal offset

- Dithering orbit feedback system worked well
- Luminosity is not sensitive to the horizontal offset and fluctuated for other reasons during this test
- No vertical orbit feedback has been used yet

C. G. PANG (LAL)

Vertical offset scan

• Vertical offset scan is used to optimise vertical beam position and estimate vertical beam size

β₀ = 8mm

= 6mm

= 4mm

• β.

• β

4500^{×10³⁰}

• L:

05/03

05/17

4000

3500⊨

3000

2500

2000

1500

1000

500

s-1

L (cm⁻²

- SNR are estimated based signals w/o collision
- ullet Vertical beam size decreases with squeezing of eta_y^*

06/14

SuperKEKB/Belle II

2018 (preliminary)

05/31

Fitted vertical beam size

LumiBelle2 HER-A

Luminosity @ $8.71 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$

 \blacktriangleright In general, beam size goes down with β_y^* squeezing

06/28

- ⇒ Beam-beam blow up was observed for $\beta_y^* = 3/4$ mm
- Luminosity calculated based on geometry is always larger than ECL luminosity — beam-beam blow up

07/12

Beam-beam simulation is under study right now

շ_γ (μm)

3.5

3

2.5

2

1.5⊢

0.5

0

05/03

05/17

 $\sigma_{x,eff}^* \approx \sigma_z \theta_{cross} = 224 \mu m$

05/31

Luminosity

06/14

3.95

Vertical offset scan

• Adjustment of XY coupling with QC1 Skew quadrupoles

C. G. PANG (LAL)

Conclusion and prospects

- LumiBelle2 and ZDLM were operating as expected during Phase-2
 - Useful real time luminosity information for SuperKEKB
 - Compatible results with simulation for single beam backgrounds
 - Good correlation with other luminosity monitors
 - Successful 1th test as input to horizontal IP orbit dithering feedback
 - Vertical beam size evaluation at IP from vertical offset scanning
- Plans:
 - Increase HER signal rate (new better location)
 - Faster charge amplifiers & lower current amplifier
 - Long-term DAQ, more channels ?
 - Keep good sensitivity and cover large luminosity range of 10^{32} ~ 10^{36} cm⁻²s⁻¹
 - Shielding / protection to mitigate activation & limit accumulated radiation dose

More test on horizontal IP orbit dithering feedback

Conclusion and prospects

• Sensitive luminosity monitoring may be very important for local IP optical tuning with extremely low beam currents to avoid beam-beam blow-up and get geometrical luminosity

- •Horizontal beam sizes all are a few um, like SuperKEKB, but will geological conditions for CEPC candidate sites be better than KEK?
- •Luminosity is not so sensitive to horizontal beam-beam offset, while for long-term drift, luminosity-driven orbit dithering feedback might also be useful and effective ?

SuperKEKB Phase-2 key machine parameters

	KEKB (2006)		Phase 2.1		Phase 2.2		Phase 2.3		Phase 2.4	
	LER	HER	LER	HER	LER	HER	LER	HER	LER	HER
β_x [mm]	590	560	200	200	256	200	128	100	128	100
β _y [mm]	6.5	5.9	8	8	2.16	2.40	2.16	2.40	1.08	1.2
$\varepsilon_{\rm x}$ [nm]	18	24	2.1	4.6	2.1	4.6	2.1	4.6	2.1	4.6
$\varepsilon_{y}/\varepsilon_{x}$ [%]	3	2.5	1	0	5.0 1.4		.4	0.7		
σ_{x}^{*} [µm]	103	116	20	30	23.2	30.3	16.4	21.4	16.4	21.4
σ_{y}^{*} [nm]	1900	1900	1296	1918	476	743	252	393	126	197
σ_{z} [mm]	7	7	6	6	6	5	6	5	6	5
φ _x [mrad]	11		41.5		41.5		41.5		41.5	
Φ	0.75	0.66	12.5	8.3	10.7	8.2	15.2	9.7	15.2	9.7
Remark	1.72x10 ³⁴ cm ⁻² s ⁻¹		10 ³³ cm ⁻² s ⁻¹		10 ³⁴ cm ⁻² s ⁻¹		2x10 ³⁴ cm ⁻² s ⁻¹		4x10 ³⁴ cm ⁻² s ⁻¹	

Summary of Beta squeezing at IP

Phase	β _x * [[mm]	β _y * [[mm]	comment	L _{peak} x10 ³³ [cm ⁻² s ⁻¹]	I _{LER} / I _{HER} , n _b [mA]	Start Date
	LER	HER	LER	HER				
2.1.0	20	200		8	Luminosity Run	0.93	250 / 220, 600	April 16
2.1.1	200		6		Luminosity Run	1.37	340 / 285, 789	May 22
2.1.2	200		4		Luminosity Run	1.36 no improve	340 / 285, 789	May 28
2.1.3	200		4 3		Luminosity Run	1.32	340 / 285, 789	June 8
2.1.4	200		3		Luminosity Run	1.05	320 / 265, 789	June 11
2.1.5	100		4		Luminosity Run	1.09	340 / 285, 789	June 12
2.1.6	200	100	2	4	Luminosity Run	2.04 improve !	350 / 295, 789	June 13
2.1.7	200	100		3	Luminosity Run	2.6	340 / 285, 789	June 20
2.2.0	20	00		2	Optics correction 50 mA	N/A	50 / 50, 1576	June 7
2.3.1	-	100	-	1.5	Optics correction 50 mA	N/A	- / 50, 1576	July 9

Detectors installation

Background study

Comparison with simulation

C. G. PANG (LAL)

Detailed algorithm of dithering feedback

C. G. PANG (LAL)

Luminosity vs offset (geometrical)

Dithering study

C. G. PANG (LAL)

Dithering study

• Measurement with spectrometer

- •Peaks at dithering frequency were observed for both detectors
- •LumiBelle2 failed to observe the peak at double frequency because it is currently operated with a higher threshold than foreseen
- •Dithering algorithm is validated

Offset phase

Assuming the dither driving is sine wave with frequency of 77Hz: positive offset ⇒ inverse phase

negative offset⇒ same phase

*Care must be taken with the phase difference between dither driving and luminosity measurement. Offset sign can get at the last dithering cycle before correction.

Dithering feedback simulation

• Ground motion data in time domain can be gotten from measured PSD with iFFT, and is used to represent beam-beam offset

C. G. PANG (LAL)

Dithering feedback simulation

• Ground motion data in time domain can be gotten from measured PSD with iFFT, and is used to represent beam-beam offset

Example of dithering feedback simulation with Phase-3 parameters *10³⁵/cm²s

