

Preliminary design of the readout architecture of the CEPC Vertex detector

Wei Wei On behalf of the CEPC MOST2 Vertex detector design team

2018-11-13

Outline

- Motivation of the MOST2 Vertex detector design
- Specification
- Preliminary design

CEPC Vertex Detector Design

Detector Requirements

- Efficient tagging of heavy quarks (b/c) and τ leptons
 - → impact parameter resolution

$$\sigma_{r\phi} = 5 \oplus \frac{10}{p(GeV)\sin^{3/2}\theta} (\mu m)$$

- Detector system requirements:
 - σ_{SP} near the IP: $<3 \mu m$ \longrightarrow ~16 μm pixel pitch
 - material budget: $\leq 0.15\% X_{o}/layer \longrightarrow$ power consumption
 - first layer located at a radius: $\sim 1.6 \text{ cm}$
 - pixel occupancy: $\leq 1 \%$

power consumption < 50mW/cm², if air cooling

 \rightarrow ~ μ s level readout

used

Target: fine pitch, low power, fast pixel sensor + light structure

Nov.7 $^{\text{th}}$, 2017

Status of CEPC vertex detector R&D in China

4

 Ref: Status of vertex detector, Q. Ouyang, International workshop on CEPC, Nov. 7th 2017

Previous CMOS pixel sensor prototypes

Prototype	Pixel pitch (µm²)	Collection diode bias (V)	In-pixel circuit	Matrix size	R/O architecture	Status
JadePix1	33 × 33 16 × 16	< 1.8	SF/amplifer	96 × 160 192 × 128	Rolling shutter	In measurement
JadePix2	22 × 22	< 10 V	amp., discriminator	128 × 64	Rolling shutter	In measurement
MIC4	25 × 25	reverse bias	amp., discriminator	112 × 96	Asynchronous	In measurement

All prototypes in TowerJazz 180 nm process

- Slides from Y. Zhang: "IHEP CMOS pixel sensor activities for CEPC", 2018.3
- Find more details in Y.P. Lu's presentation: "Pixel design and prototype characterization in China" this morning

From vertex detector MOST1 projects towards MOST2

- To build a prototype ladder mounted with silicon pixel sensors
 - Spatial resolution 3-5 μm
 - TID 1 Mrad
- Compared with MOST1 project target:
 - Pixel sensor prototype design
 - Spatial resolution 3-5 μm
 - Power consumption <100 mW/cm2</p>
 - Integration time 100 μs

- MOST1 focused on key performance, however we should focus more on a full function chip that can work in a prototype system
- Baseline design for MOST2:
 - Reuse the pixel design from MOST1, with necessary modification
 - Focus on full chip readout architecture design, esp. fast readout and full data readout chain

Ladder Prototype

Silicon Vertex Detector Prototype – MOST (2018–2023)

Sensor technology CMOS TowerJazz

- + Design sensor with large area and high resolution
- + Integration of front-end electronic on sensor chip

Benefit from MOST 1 research program

3-layer sector Baseline MOST2 goal: 3-layer prototype Default layout requires different size ladders Integrate electronics Keep it simple for baseline design readout L1 3-lavers L2 same size **Design and produce** same chip light and rigid L3 L3 support structures

• Ref: Introduction to the Pixel MOST2 Project, Joao Costa, 2018.6

Main Specs of MOST2 chip

- Bunch spacing
 - Higgs: 680ns; W: 210ns; Z: 25ns
 - Meaning 40M/s bunches (same as the ATLAS Vertex)
- Hit density
 - 2.5hits/bunch/cm² for Higgs/W;
 0.2hits/bunch/cm² for Z
- Cluster size: 3pixels/hit
- The hit rate: Higgs 11 MHz/cm², W 36MHz/cm², Z 24 MHz/cm²
- The chip should be capable with 36MHz/cm² hit rate
- Suppose the pixel array size is 512rows*1024cols (ALPIDE), 25um*25um pixel size, and 1.28cm*2.56cm pixel array area
- → Hit rate: 120MHz/chip, or <u>225Hz/pixel (average)</u>, <u>120kHz/col (ave)</u>
 - Meaning every 8.3us, the column will be hit, however, very unlikely to be at the same pixel
- In order to readout without data loss, time stamp has to be added for every hit
 - According to the readout speed of MOST1(10~100us), it is not capable for this large hit rate
 - Also MOST1 chip design (MIC4) is currently base on ALPIDE readout architecture, which is still more or less frame-based, not fully capable with trigger readout

From pre-CDR

The ALPIDE readout architecture

Fig. 2. Block diagram of the ALPIDE pixel cell.

Table 1

General requirements for the pixel sensor chip for the Upgrade of the ALICE Inner Tracking System. In parentheses: ALPIDE performance figure where above requirements.

Parameter	Inner barrel	Outer barrel
Chip dimensions (mm × mm)	15 × 30	
Silicon thickness (µm)	50	100
Spatial resolution (µm)	5	10 (5)
Detection efficiency	>99%	
Fake hit probability (evt^{-1} pixel ⁻¹)	<10-5 (<<10-5)	
Integration time (µs)	<30(10)	
Power density (mW/cm ²)	<300(~35)	<100(~20)
TID radiation hardness ^a (krad)	2700	100
NIEL radiation hardness ^a (1 MeV n _{eq} /cm ²)	1.7×10^{13}	1×10^{12}
Readout rate, Pb-Pb interactions (kHz)	100	

 $^{\rm a}$ 10 \times the radiation load integrated over the approved program (6 years of operation).

- The ALPIDE architecture, as MOST1 referenced, uses strobe signal as the "trigger"
- However, the readout rate is only ~100kHz, and more like frame readout

Discussion on ALPIDE – analysis & conclusion

- ALPIDE is not fully compatible with CEPC vertex & other high hit rate, high bunch crossing applications (like ATLAS)
- 1. Bunch crossing too high
 - Now bunch crossing at 100~200kHz (i.g. frame rate)
 - While CEPC 1.5MHz (Higgs) ~ 40MHz(Z pole)
 - > Not possible for the chip level frame-like readout, because:
 - At least 120MHz clk has to run at periphery-column level (3pixel per hit)
 - ALPIDE is "triggerless", no further data reduction, data rate too high (*32bits per hit)
- 2. Pixel analog should be (much) faster
 - now 2us peaking, 10us duration
 - CEPC: "Hit rate: 120MHz/chip, or <u>225Hz/pixel (average), 120kHz/col (ave)</u>", Meaning every 8.3us, the column will be hit, however, very unlikely to be at the same pixel
 - For CEPC, peaking time should be much faster (25ns level)
 - Otherwise leads to too large delay for the arrival time stamp (although can be covered by the configurable trigger match error)
 - For CEPC, duration should also be faster
 - **>** Better ends earlier than 8.3us, avoiding continuous hit in the same pixel
 - Larger power expected than ALPIDE

Proposed architecture for MOST2

- Similar to the ATLAS ITK readout architecture: "column-drain" readout
 - Priority based data driven readout
 - Modification: time stamp is added at EOC whenever a new fast-or busy signal is received
 - Dead time: 2 clk for each pixel (50ns @40MHz clk), negligible compared to the average hit rate
- 2-level FIFO architecture
 - L1 FIFO: In column level, to de-randomize the injecting charge
 - L2 FIFO: Chip level, to match the in/out data rate between the core and interface
- Trigger readout
 - Make the data rate in a reasonable range
 - Data coincidence by time stamp, only the matched event will be readout

Increased data rate as for the real CEPC

- Every hit has 27~32bits (async): col addr 9bits (512), row addr 10bits (1024), time stamp ~8bits (suppose 40MHz clock, covers 6.4us time region)
- If triggerless, all the raw hit data should be sent off chip
 - The data rate: ~32bits*120MHz= 3.84Gbps, possible, but risk too high in the current stage
- If trigger, on-chip buffer should be designed
 - Suppose trigger latency 3us. Trigger rate was said 20kHz~50kHz
 - Triggered data rate:
 - > 2.5/hits/bunch/cm²*3pixels/hit*1.28cm*2.56cm*32bit=786bit/bunch/chip
 - > W@20kHz trigger rate -> 15.7Mbps/chip as the triggered data rate
 - In order to cover any trigger error(mismatch of the edge in different column, time walk of the hit peaking...)
 - A trigger window can be set, so that the data within the ±σ of the trigger time stamp can all be read out
 - In this way, the readout data rate will be (suppose trigger window of ±3LSB time stamp):
 - 15.7Mbps * 7 ~ 110Mbps
 - Can still be read out by a single LVDS interface

Other necessary modification for the pixel cell

Simulation condition: Cd = 2.5 fF, Qin = 50 e⁻ - 6k e⁻, 3 different IBIAS

Delay of leading edge vs. input charge

- Pixel analog in the same architecture as
 ALPIDE (and benefit from MIC4 for
 MOST1) but with different parameters
 - Aiming especially for fast readout
- Biasing current has to be increased, in order to achieve a peaking time of ~25ns
 - Otherwise there will be timing error for the event, and has to open a trigger window in this case
 - Now in MOST1 ~2us peaking time was designed, which is too slow for 40MHz BX

Consequence:

- Power dissipation increased:
 - bias@440nA with peaking time 29ns, but 138mW/cm² for analog
 - Total power density may exceed 200mW/cm²
- Modified TJ process for ATLAS has to be used
 - With faster charge collection time, otherwise only fast electronics is of no meaning

Summary

- MOST2 Vertex detector sensor design will be benefit from existing MOST1 designs, with further development on fast readout
- Readout architecture modified from "strobed-trigger" readout into "column-drain" readout
 - Based on priority readout and data driven
 - Two level FIFOs designed with negligible dead time
- Time stamp added for each hit cluster
 - trigger coincidence will use the time stamp for arbitration
- Pixel analog modified for faster peaking time
 - Aiming for ~25ns peaking time
 - Power dissipation increased consequently
 - modified TJ process is necessary for faster charge collection time

Thank you!