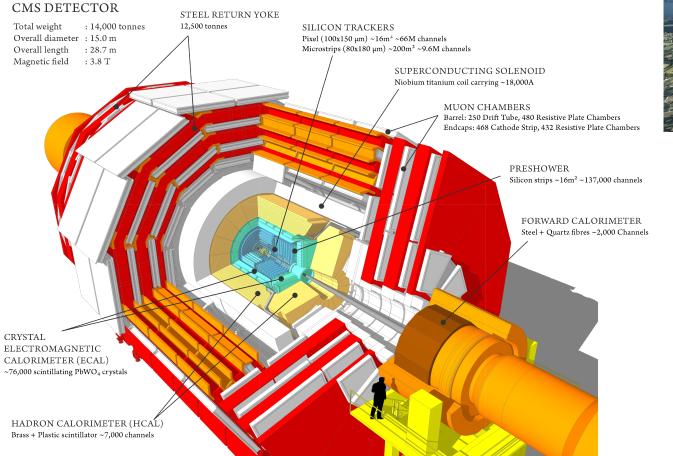


# Overview of CMS trigger

<u>Simone Bologna</u>, on behalf of the CMS collaboration

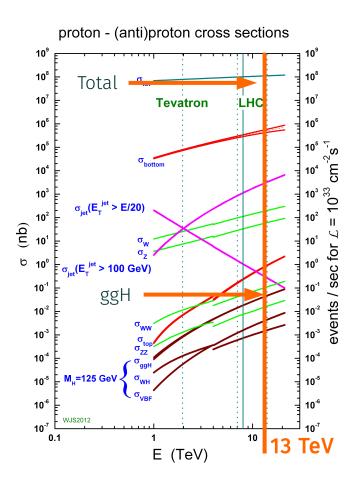

University of Bristol

13 November 2018

## The Compact Muon Solenoid experiment, CMS










- ~ 75M channels total
- 1-2 MB per event
- 40 MHz bunch crossing rate
- O(100 TB/s) raw data

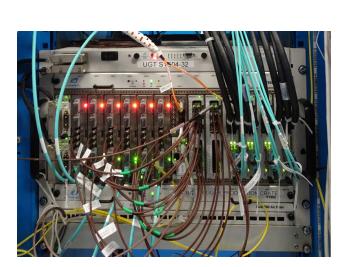
## The challenge





### Trigger!

•

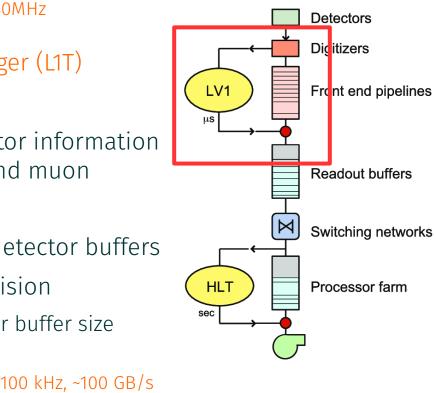

- Reduces rate while keeping high efficiency to interesting physics
- Two big challenges
  - Handling data rate
  - Selecting physics
- Total pp cross section is ~ 10<sup>8</sup> nb @ 13 TeV
  - Dominated by inelastic QCD scattering
  - Example: Higgs boson production via gluon-fusion is a billion times smaller!
  - Pile-up problem
- CMS physics rate to disk ~ 1 kHz, driven by computing costs

## ~ 10<sup>5</sup> reduction factor in ~ 1 s

## Trigger architecture Level-1 Trigger








# Level-1 Trigger (L1T)

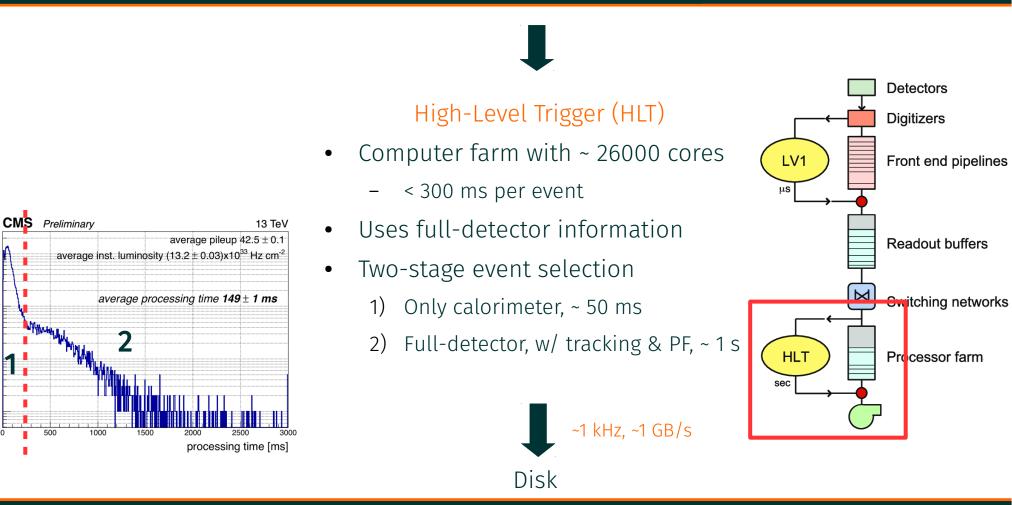
40MHz

Detector

- Hardware-based
- Uses low-res detector information from calorimeter and muon
  - No tracker
- Data stored in on-detector buffers
- 3.8 µs to take a decision
  - Limited by tracker buffer size



## Trigger architecture *High-Level Trigger*


events / 5 [ms]

10<sup>3</sup>

10





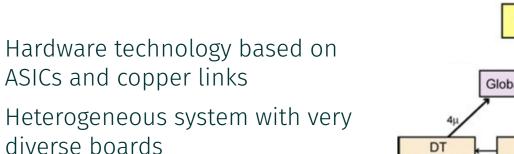


Level-1 Trigger

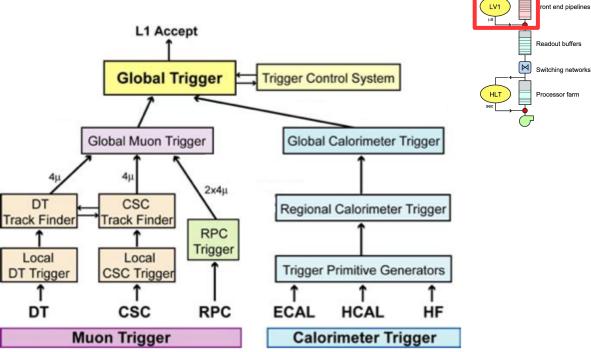
## A short history and future of triggering






Trigger must be upgraded in order to keep high acceptance to EWK & Higgs physics at higher inst. lumi

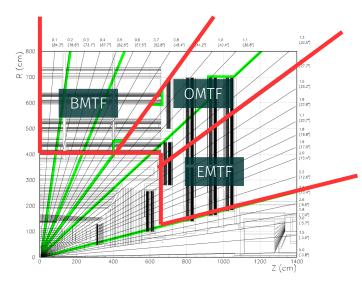
## Level-1 Trigger *Run-1*

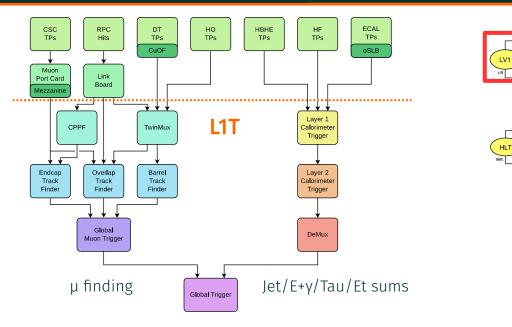





Detectors




 This made system maintenance and control very hard to perform




## Level-1 Trigger *Run 2/3*

CMS University of BRISTOL

- Upgraded L1T deployed in 2015/2016
  - Currently in use
- Muon system has been redesigned to be region-based





- Two-layer calorimeter trigger
  - Layer-1 packs data and performs calibrations
  - Layer-2 reconstructs calo objects

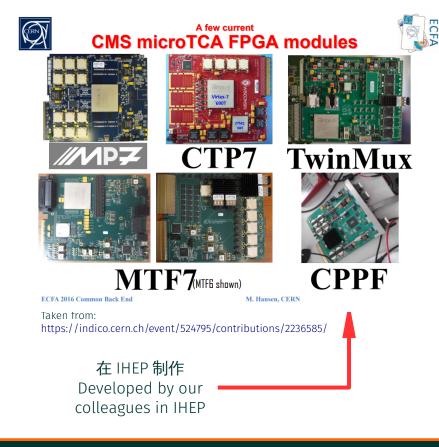
Detectors

iaitizers

ront end pipelines

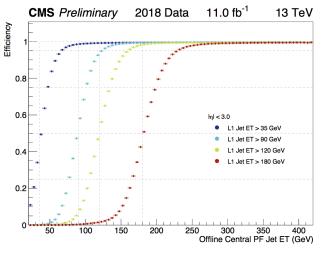
Readout buffers

Switching networks

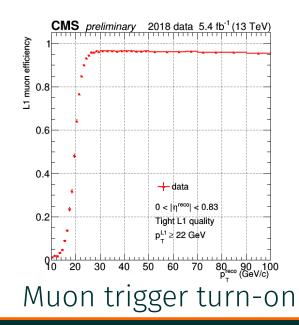

Processor farm

## Level-1 Trigger *Hardware*

- ASICs  $\rightarrow$  FPGA
- Custom boards → small set of generic boards types
  - MP7, MTF7 for object finding
  - CTP7, TWINMUX, and CPPF for data preprocessing and fan-out
  - AMC13 for clock distribution and event building
  - Firmware shared across L1T subsystems
    - Reduced integration and commissioning time
- Copper links  $\rightarrow$  Optical links
  - Increased bandwidth
    - E.G. this enabled to have an increased granularity in the calorimeter trigger







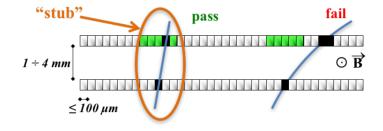

- Calorimeter and muon trigger subsystems reconstruct objects
  - μ, EG, tau, jet, sums
- µGT runs up to 512 algorithms in parallel on these objects
  - Able to run complex correlation algorithms, e.g. invariant mass for VBF triggers



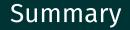
Jet trigger turn-on






### L1T

- Input from tracker
  - Improved resolution, identification, pile-up rejection, ...
- Max rate 100  $\rightarrow$  750 kHz
- Latency 3.8  $\rightarrow$  12.5 µs


### HLT

- Output rate 1 kHz  $\rightarrow$  7.5 kHz
- ~ 20-time higher computing power
- Heterogeneous computing is being investigated
  - E.G. GPUs for tracking





| CMS detector                      | LHC<br>Run-2        | HL-LHC<br>Phase-2   |           |  |
|-----------------------------------|---------------------|---------------------|-----------|--|
| Peak $\langle PU \rangle$         | 60                  | 140 200             |           |  |
| L1 accept rate (maximum)          | 100 kHz             | 500 kHz             | 750 kHz   |  |
| Event Size                        | 2.0 MB <sup>a</sup> | 5.7 MB <sup>b</sup> | 7.4 MB    |  |
| Event Network throughput          | 1.6 Tb/s            | 23 Tb/s             | 44 Tb/s   |  |
| Event Network buffer (60 seconds) | 12 TB               | 171 TB              | 333 TB    |  |
| HLT accept rate                   | 1 kHz               | 5 kHz               | 7.5 kHz   |  |
| HLT computing power <sup>c</sup>  | 0.5 MHS06           | 4.5 MHS06           | 9.2 MHS06 |  |
| Storage throughput                | 2.5 GB/s            | 31 GB/s             | 61 GB/s   |  |
| Storage capacity needed (1 day)   | 0.2 PB              | 2.7 PB              | 5.3 PB    |  |





- Triggering and data acquisition at hadron colliders is extremely challenging
  - O(100 TB/s) → O(1 GB/s)
  - Interesting events are rare and hidden in many pile-up interactions
- CMS employs a two-level trigger architecture to select physics of interest
  - Level-1 Trigger, hardware-based, uses reduced detector information
  - High-Level Trigger, software-based, uses full-detector data
- Trigger and data acquisition systems are in constant evolution to match the increase in LHC luminosity
- TDAQ technology and techniques developed for LHC will have application in the post-LHC era

# Backup

2018-07-05



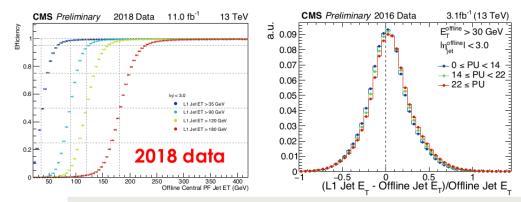
# Jet algorithm & performance

#### Input granularity

CMS

Access to higher granularity than previous system (single TT)

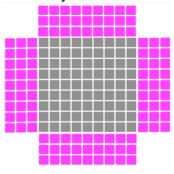
#### Sliding window jet algorithm


Search for TT above threshold and maximum in 9x9 window (approximately the size of an AK4 offline jet)

#### "Chunky donut" pileup subtraction

 $E_{T}$  in 3x9 regions around the jet computed Energy in 3 lowest  $E_{T}$  regions used to determine PU energy density Scaled & subtracted to the individual jet  $E_{T}$ 

#### Calibration


Corrected energies as function of  $\eta$  and  $\mathsf{E}_{\mathsf{T}}$ 



inequality masks avoid selfmasking and double counting

| > | > | > | > | > | > | > | > | > |
|---|---|---|---|---|---|---|---|---|
| ≥ | > | > | > | > | > | > | > | > |
| ≥ | ≥ | > | > | > | > | > | > | > |
| ≥ | ≥ | ≥ | > | > | > | > | > | > |
| ≥ | ≥ | ≥ | ≥ |   | > | > | > | > |
| ≥ | ≥ | ≥ | ≥ | ≥ | ≥ | > | > | > |
| ≥ | ≥ | ≥ | ≥ | ≥ | ≥ | ≥ | > | > |
| ≥ | ≥ | ≥ | ≥ | ≥ | ≥ | ≥ | ≥ | > |
| ≥ | ≥ | ≥ | ≥ | ≥ | ≥ | ≥ | ≥ | ≥ |

chunky donut area

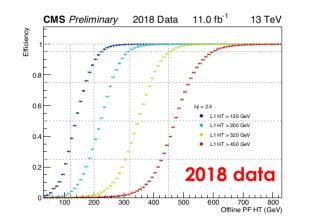


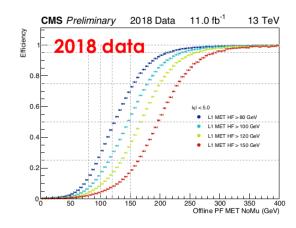
2018-07-05

6



# Sums algorithm & performance


#### Types of algorithms


CMS

**HT**: scalar  $E_T$  sum of jets with  $E_T > 30$  GeV with  $|\eta| < 2.4$ **Missing transverse energy (MET)**: norm  $|-\Sigma E_T|$  of trigger towers up to  $|\eta| = 5$ 

#### **Pileup mitigation**

Exclude energy deposits from the MET calculation below a dynamic  $\eta$ -dependent threshold calculated using an estimate of the pileup in the event





#### Typical thresholds

MET > 130 GeV HT > 360 GeV

2018-07-05

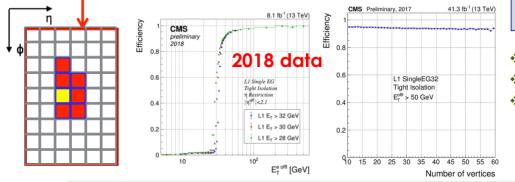


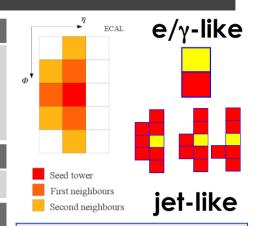
# L1 e/y algorithm & performance

#### L1 $e/\gamma$ clustering algorithm

Dynamic clustering around local maximum (seed)

- Recovering the energy loss due to tracker material
- Minimizing effect of pileup contributions
- Improved energy resolution
- Extension of the cluster in  $\phi$  to recover brem


#### $e/\gamma$ calibration


CMS,

Calibration depending on ET,  $\boldsymbol{\eta}$  and the reconstructed shape

#### e/γ identification

- Shape veto  $\rightarrow e/\gamma$  have more compact shapes than jets
- E/H identification  $\rightarrow$  e/ $\gamma$  typically have small hadronic deposits
- Isolation energy  $(E_T^{6x9}-E_T^{e/\gamma}) \rightarrow$  larger for jets





### **Typical thresholds**

SingleIsoEG > 30 GeV DoubleEG > 25,14 GeV TripleEG > 18,17,8 GeV

- Excellent performance
- Good pileup resilience
- Loose/Tight isolation working points adapted to different kinematic regimes

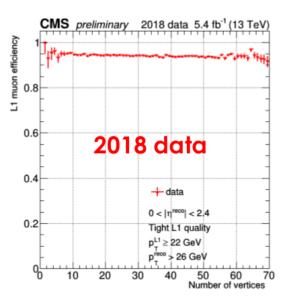


# L1 had. $\tau$ algorithm & performance

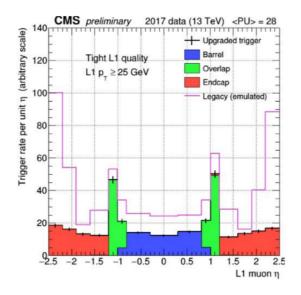


2018-07-05

8


L1  $\tau$  clustering algorithm Typical thresholds EG-cluster type as baseline to L1 tau reconstruction DoubleTau > 34, 34 GeV Merging with one neighboring cluster possible  $\rightarrow$  captures multi-SingleTau > 120 GeV prong hadronic tau signatures EGTau > 22, 26 GeV  $\tau$  calibration Calibration depending on  $E_{T}$ ,  $\eta$  and the E/H fraction  $\tau$  identification Isolation energy  $(E_{T}^{6x9}-E_{T}^{e/\gamma}) \rightarrow cut$  depends on  $n_{TT}$ ,  $E_{T}$  and  $\eta$ Isolation window Reconstructed CMS Preliminary 2018 data 11.11 fb<sup>-1</sup> (13 TeV) CMS Preliminary 2017 data 40.9 fb<sup>-1</sup> (13 TeV) Efficiency Efficiency tau (no merge) 0.8 2018 data One tau reconstructed 0.6 0.6 Isolated, E<sub>x</sub><sup>x, L1</sup> > 30 GeV (merged clusters) Barrel Isolated, E\_ 34 GeV Endcaps 0.4 0.4 Isolated, E<sup>1, L1</sup> > 38 GeV Excellent performance ÷ <sup>x, affine</sup> > 40 GeV 0.2 0.2 olated, E<sup>1, L1</sup> > 30 GeV **Excellent pileup resilience** \* Thresholds maintained \* 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 throughout 2016-2018 thanks to  $p_{-}^{\tau, \text{ offline}} [GeV]$ Number of vertices adapted isolation WP

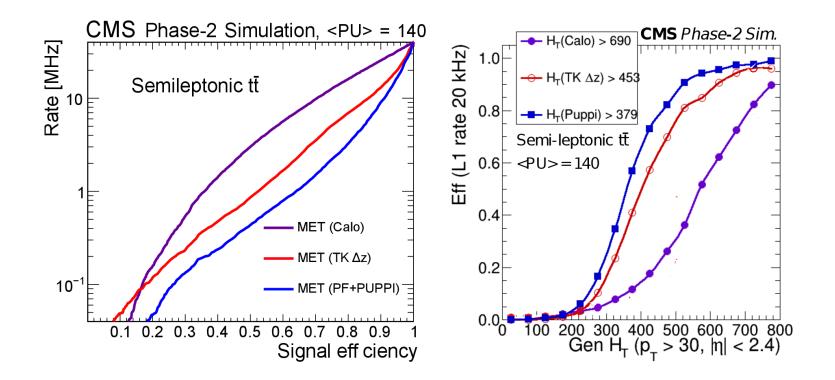
### L1T muon trigger performance




Muon thresholds SingleMu: 22 GeV DoubleMu: 15 ,7 GeV TripleMu: 5, 3, 3 GeV

#### CMS preliminary 2017 data 6.8 fb<sup>-1</sup> (13 TeV) muon efficiency 0.8 Ξ 0.6 Upgraded trigger Legacy (emulated) 0.4 Tight L1 quality 0.2 L1 p\_ ≥ 25 GeV Offline p\_ > 30 GeV -2 -1.5 -1 -0.5 0 0.5 1.5 2




### Taken from O. Davignon's talk at ICHEP 2018



 Efficiency improved in the overlap region  Excellent pileup resilience Rate reduced by 20-80%
w.r.t. legacy system

PF @ L1



