THE 2018 INTERNATIONAL WORKSHOP ON HIGH ENERGY CIRCULAR ELECTRON POSITRON COLLIDER

Higgs BSM Interpretations

刘真 Zhen Liu U of Maryland Nov.14, 2018

> Based upon: S. Di Vita, G. Durieux, Grojean, Gu, ZL, G. Panico, M. Riembau, T. Vantalon, <u>1711.03978</u>, J. Gu, H. Li, ZL, S. Su, W. Su, <u>1709.06103</u>

Constraints from $e^+e^- \rightarrow ZH$

O(30%) precision achievable, at 5 ab^-1 for an unpolarized e+e- machine, with some assumptions that we will break down in the next few slides;

 δ_h

Constraints from $e^+e^- \rightarrow ZH$: discussion

Hard to achieve single O_6 operator from UV point of view;

To gain knowledge about the O_6 in presence of other operators one needs to include more observables;

Constraints from $e^+e^- \rightarrow ZH$: discussion

Hard to achieve single O_6 operator from UV point of view;

To gain knowledge about the O₆ in presence of other operators one needs to include more observables;

Taking the simplest extension of the SM:

SM+1 singlet O_H and O_6 are simultaneously generated, can be translated into δ_h and δ_Z here;*

One can use the $e^+e^- \rightarrow ZH$ cross section at different center of mass energy to constrain the Higgs trilinear coupling.

Constraints from $e^+e^- \rightarrow ZH$: discussion

5

more operators

How many more do we need to include to robustly extract trilinear Higgs couplings from this process?

EFT is a nice framework to address this issue:

a) ``model blind";

 b) Can relate different measurements at different scales and observables, allowing a more consistent/transparent treatment beyond Higgs observables;

more operators

How many more do we need to include to robustly extract trilinear Higgs couplings from this process?

$$\begin{array}{l} \mathcal{O}_{WW} = g^2 |H|^2 W^a_{\mu\nu} W^{a,\mu\nu} \\ \mathcal{O}_{BB} = g'^2 |H|^2 B_{\mu\nu} B^{\mu\nu} \\ \mathcal{O}_{WB} = gg' H^{\dagger} \sigma^a H W^a_{\mu\nu} B^{\mu\nu} \\ \mathcal{O}_{H} = \frac{1}{2} (\partial_{\mu} |H|^2)^2 \\ \mathcal{O}_{T} = \frac{1}{2} (H^{\dagger} \overleftrightarrow{D}_{\mu} H)^2 \\ \mathcal{O}_{L}^{(3)\ell} = (iH^{\dagger} \sigma^a \overleftrightarrow{D}_{\mu} H) (\bar{L}_L \gamma^{\mu} \sigma^a L_L) \\ \mathcal{O}_{LL}^{(3)\ell} = (\bar{L}_L \gamma_{\mu} \sigma^a L_L) (\bar{L}_L \gamma^{\mu} \sigma^a L_L) \\ \mathcal{O}_{LL}^{\ell} = (iH^{\dagger} \overleftrightarrow{D}_{\mu} H) (\bar{L}_L \gamma^{\mu} L_L) \\ \mathcal{O}_{L}^{\ell} = (iH^{\dagger} \overleftrightarrow{D}_{\mu} H) (\bar{L}_L \gamma^{\mu} e_R) \end{array}$$

EFT is a nice framework to address this issue: a) ``model blind";

 b) Can relate different measurements at different scales and observables, allowing a more consistent/transparent treatment beyond Higgs observables;

> 9 tree-level CP even dimension-6 operators contributing at linear level; and more if we include some of the SM input parameter uncertainties;

Angular asymmetries help probe these operators, see N. Craig, J. Gu, ZL, K. Wang, 1512.06877

- The impact of adding the new d.o.f. of Higgs trilinear modifications is quite sizable;
- Strong correlations between the trilinear modification and the parameter (hZZ shifting); already seen in the simplest example for the singlet extension;
- Sizable reduction in other ``coupled" coefficients;

More observables (that are sensitive to Higgs trilinear)

New probes:

Cross sections at different c.o.m. energies, 240 GeV & 350 GeV;

Different production processes, ZH & WW-fusion;

Decay processes, WW^{*} and ZZ^{*};

10 $\frac{C_1}{\text{on-shell } h \text{ decay}} \begin{bmatrix} ZZ & WW & \gamma\gamma & gg & f\bar{f} \\ 0.0083 & 0.0073 & 0.0049 & 0.0066 & 0 \end{bmatrix} 18$

C₁ linear dependence on trilinear modifications G. Degrassi, P. Giardino, F. Maltoni, D. Pagani, <u>1607.04251</u>

More observables (that are sensitive to Higgs trilinear)

New probes:

Cross sections at different c.o.m. energies, 240 GeV & 350 GeV ;

Different production processes, ZH & WW-fusion;

Decay processes, WW* and ZZ*;

11 $\frac{C_1}{\text{on-shell } h \text{ decay}} \begin{bmatrix} ZZ & WW & \gamma\gamma & gg & f\bar{f} \\ 0.0083 & 0.0073 & 0.0049 & 0.0066 & 0 \end{bmatrix}$ 18

C₁ linear dependence on trilinear modifications G. Degrassi, P. Giardino, F. Maltoni, D. Pagani, <u>1607.04251</u>

Results

12

*bands corresponds to 0.1% to 1% systematic uncertainties assumed for aTGCs

Results

- Higgs precision improves the HL-LHC results on Higgs trilinear coupling significantly;
- Complementary information in the Higgs precision program at 350 GeV c.o.m. further improves the results significantly;

Results: 240 GeV and 350 GeV interplay

11/13/2018 Zhen Liu Higgs Fit @ CEPC 2018

*bands corresponds to 0.1% to 1% systematic uncertainties assumed for aTGCs

Results: 240 GeV and 350 GeV interplay

- Assuming that the instantaneous luminosity of 350 GeV is ¼ of 240 GeV run, one can find the optimal running point for the Higgs trilinear;
- Similar practice can be done for many others, physics goals need to be chosen carefully.

*bands corresponds to 0.1% to 1% systematic uncertainties assumed for aTGCs

Results: complementarities

11/13/2018 Zhen Liu Higgs Fit @ CEPC 2018 fter profiling over other parameters and use $\Delta \chi^2 = 1$ and 4, we define the 68% and 95% C.L. level:

 $H = \cos\theta \ h + \sin\theta \ S$

Tree-level results through mixing and coupling modifiers

21

Tree-level results through mixing and coupling modifiers

A Quantum Probe

CEPC can also probe new particles interacting via the "Higgs force" purely through their quantum effects

Implications for:

- Baryogenesis
- Hierarchy problem
- Dark Matter

•

22

2HDM

h

Patterns of strong dynamics, R. Rattazzi, D. Liu, et al.

	\mathcal{O}_H	\mathcal{O}_W	\mathcal{O}_B	\mathcal{O}_{HW}	\mathcal{O}_{HB}	\mathcal{O}_{BB}	\mathcal{O}_{GG}	\mathcal{O}_{y_u}	\mathcal{O}_{y_d}	\mathcal{O}_{y_e}	\mathcal{O}_{3W}	
ALH	g_*^2	1	1	1	1	1	1	g_*^2	g_*^2	g_*^2	$rac{g^2}{g_*^2}$	
GSILH	g_*^2	1	1	1	1	$\frac{y_t^2}{16\pi^2}$	$\frac{y_t^2}{16\pi^2}$	g_*^2	g_*^2	g_*^2	$\frac{g^2}{g_*^2}$	
SILH	g_{*}^{2}	1	1	$\frac{g_*^2}{16\pi^2}$	$\frac{g_*^2}{16\pi^2}$	$\frac{y_t^2}{16\pi^2}$	$\frac{y_t^2}{16\pi^2}$	g_*^2	g_*^2	g_*^2	$\frac{g^2}{16\pi^2}$	
95%CL bound of the 12-parameter fit in SILH' basis												
10 ²	CEPC ILC FCC-e	240Ge 250Ge e 240Ge	V <mark>(5/ab)</mark> V (2/ab) V (10/ab	+ 350GeV + 350GeV) + 350Ge\	(200/fb) + (200/fb) + / (2.6/ab) +	HL-LHC 500GeV (+ HL- <u>L</u> HC	4/ab) + HL	-LHC	tra	anslated Xiv:1704	from the re 02333	esults in
[] 10 ¹ 1 [] 10 ¹ 1 [] 10 ¹ 1 [] 0,1	light shade	e: individua e: global fit	al fit (one o	operator at a	time)							
	C _H C	$c_W(=-c_l$	в) с _{нw}	C _{HB}	CBB	C _{GG}	C_t	c_c	c_b	C_{τ}	C_{μ}	C_{3W}

Patterns of strong dynamics, R. Rattazzi, D. Liu, et al.

- Higgs self-couplings are the keys to reveal nature of EVVP1 and EVVBG;
- CEPC could use precision Higgs measures to constrain Higgs trilinear couplings in a robust way in the general EFT framework; we setup the framework and include more observables;
- The observable set and operator set can be further expanded for a fuller treatment, so far we dropped a few of them constrained by EWPO;*
- Interplay between Higgs precision and EWPO, 240 GeV and 350 GeV, CEPC and other future collider programs, can be studied in this framework and provide useful information;
- We also sketch how would representative BSM scenarios look like with CEPC Higgs precision.

Summary and out

- Higgs physics is rich and challe lamppost for our exploration of
- Many efforts from different direc promising to provide valuable information the great physics at CEPC and SPPC Higgs preci We all need to contribute!
- A lot to exp
 - more sub *Thank you!* processes
 - detector design and study on jet-r identification
 - key background reduction like Ba
 - reducing theoretical uncertainties ¹/₂
- Study for rare decays, CP, etc. My outlook 3.5 yrs agoen Liu Hig 2018

Outlook

- Jet-clustering/identification at the CEPC, where the picture could be completely different from hadron colliders, and their applications to BSM physics in addition to serving as QCD tests;
- Tau-lepton tag and its polarization at CEPC, and its application to asymmetries at both Z-pole and ZH;
- The CEPC sensitivities to some "not so rare" Higgs exotic decays, especially for these with trigger problems at the LHC (as CEPC triggering efficiency can be considered as 100% for any exotics);
- The CEPC sensitivity to Higgs "CP violation" as it probably is going to pin down the CP phase;
- A longer term plan for fully correlated analysis of Higgs precisions (systematic, interference in signal processes) should be in place.

Relative coupling measurement precision and the 95% CL upper limit on ${\rm BR}_{\rm inv}^{\rm BSM}$									
	10-р	arameter fit	7-parameter fit						
Quantity	CEPC	CEPC+HL-LHC	CEPC	CEPC+HL-LHC					
κ_b	1.3%	1.0%	1.2%	0.9%					
κ_c	2.2%	1.9%	2.1%	1.9%					
κ_{g}	1.5%	1.2%	1.5%	1.1%					
κ_W	1.4%	1.1%	1.3%	1.0%					
$\kappa_{ au}$	1.5%	1.2%	1.3%	1.1%					
κ_Z	0.25%	0.25%	0.13%	0.12%					
κ_γ	3.7%	1.6%	3.7%	1.6%					
κ_{μ}	8.7%	5.0%	_	_					
$\mathrm{BR}^{\mathrm{BSM}}_{\mathrm{inv}}$	< 0.30%	< 0.30%	_	_					
Γ_H	2.8%	2.3%	_	_					

