

Institute of High Energy Physics Chinese Academy of Sciences

EWK white paper plan

Zhijun Liang

Institute of High Energy Physics , Chinese Academy of Science

CEPC workshop , Nov 15th 2018

Introduction to CEPC

- CEPC is Z factory($E_{cms} \sim 91 \text{GeV}$), electroweak precision physics at Z pole.
 - **baseline** L=1.6 X 10³⁵ cm⁻²s⁻¹ , Solenoid =3T, 3X10¹¹ Z boson
 - L= $3.2 \times 10^{35} \text{ cm}^{-2}\text{s}^{-1}$, Solenoid =2T, $6\times 10^{11} \text{ Z boson}$
 - Assuming Z cross section with ISR correction : 32 nb
- WW threshold scan runs (~160GeV) are also expected.
 - Total luminosity 2.5 ab⁻¹,14M WW events

CEPC EWK physics in CDR

• Expect to have one order of magnitude better than current precision

Precision Electroweak Measurements at the CEPC

Electroweak Physics at CEPC, Zhijun Liang

CEPC EWK physics in CDR

• Expect to have one order of magnitude better than current precision

Observable	LEP precision	CEPC precision	CEPC runs	CEPC $\int \mathcal{L} dt$
m_Z	2.1 MeV	0.5 MeV	Z pole	8 ab^{-1}
Γ_Z	2.3 MeV	0.5 MeV	Z pole	8 ab^{-1}
$A_{FB}^{0,b}$	0.0016	0.0001	Z pole	8 ab^{-1}
$A^{0,\mu}_{FB}$	0.0013	0.00005	Z pole	8 ab^{-1}
$A^{0,e}_{FB}$	0.0025	0.00008	Z pole	8 ab^{-1}
$\sin^2 heta_W^{ ext{eff}}$	0.00016	0.00001	Z pole	8 ab^{-1}
R_b^0	0.00066	0.00004	Z pole	8 ab^{-1}
R^0_μ	0.025	0.002	Z pole	8 ab^{-1}
m_W	33 MeV	1 MeV	WW threshold	2.6 ab^{-1}
m_W	33 MeV	2-3 MeV	ZH run	5.6 ab^{-1}
$N_{ u}$	1.7%	0.05%	ZH run	$5.6 \mathrm{~ab}^{-1}$

Electroweak Physics at CEPC, Zhijun Liang

Structure of EWK white paper

- Part I : Overview of EWK physics potential
 - Similar to CDR
 - Should cover most of EWK observable
 - Adding Z->tautau , Z hadronic cross section
 - adding alpha_QED (joint with Fcc-ee)
 - Adding Alpha_QCD with R_l (joint with QCD white paper)
- Part 2: A few Benchmark
 - W mass measurement
 - Z pole combined measurements
 - Top mass in Top threshold scan (?)
- Part 3: expected improvement in EWK global fit

Benchmark : W mass measurement

Two approaches to measure W mass :

Direct measurement performed in ZH runs (240GeV) Precision 2~3MeV

WW threshold scan

WW threshold runs (157~172GeV) Expected Precision 1MeV level

Benchmark : W mass measurement

Things to be done

Colour reconnection **Bose-Einstein** effects

- Kinematics fit in direct measurement
- W mass measurement in fully hadronic channel
 - Sensitivity to color connection (input from QCD team)
 - W mass as a function of decay angle

79

6

• TULLY NADIONIC ANALYSIS IN ALEPH						
	$\Delta m_{\rm W} \; ({\rm MeV}/c^2)$			$\Delta \Gamma_{\rm W} ({\rm MeV})$		
Source	standard	PCUT	CONE	standard	PCUT	CO
Jet energy scale/linearity	2	2	3	2	12	4
Jet energy resoln	0	1	0	7	9	1
Jet angle	6	6	6	1	3	3
Jet angle resoln	1	3	2	15	18	9
Jet boost	14	15	11	5	5	4
Fragmentation	10	20	20	20	40	4
Radiative Corrections	2	2	2	5	7	7
LEP energy	9	10	10	7	7	
Ref MC Statistics	2	3	3	5	7	
Bkgnd contamination	8	5	5	29	31	3

28

 $\mathbf{2}$

36

3

104

20

fully hadronia analysis in ALEDU

NE

45

10

24

10

Benchmark : Z pole combined measurement

- Input : cross section measurements, AFB measurements
- Optimisation of off-peak statistics

Benchmark : Z pole combined measurement

- Output of combined measurement
 - Error matrix of EWK observable
 - R_l is input to Alpha_QCD

	five-parameter fit
$M_{\rm Z}~({\rm GeV}/c^2)$	$91.1885{\pm}0.0031$
$\Gamma_{\rm Z}~({\rm GeV})$	$2.4951{\pm}0.0043$
$\sigma_{ m had}^0$ (nb)	$41.559{\pm}0.058$
R_ℓ	20.725 ± 0.039
${ m A}_{ m FB}^{0,\ell}$	$0.0173 {\pm} 0.0016$

five-parameter correlation matrix					
	$M_{\rm Z}$	$\Gamma_{\rm Z}$	$\sigma_{ m had}^0$	R_ℓ	${ m A}_{ m FB}^{0,\ell}$
$M_{\rm Z}$	1.00	0.03	-0.09	-0.02	0.12
Γ_{Z}		1.00	-0.38	0.01	0.00
$\sigma_{ m had}^0$			1.00	0.25	0.00
R_ℓ				1.00	-0.08
${ m A}_{ m FB}^{0,\ell}$					1.00

Top threshold scan

Prospect of CEPC W mass measurement

- CEPC can improve current precision of W mass by one order of magnitude
 - A possible BSM physics can be discovered in the future

Electroweak Physics at CEPC, Zhijun Liang

Discussion

- Need large Simulation samples with Z->ll, Z->bb at CEPC
- W mass measurement
 - Direct measurement : Peizhu Lai (NCU)
 - Threshold scan : Peixun Shen (NKU)
- Missing manpower for Z pole measurements
 - Z->mumu / Z->ee
 - Z->tautau
 - AFB_b with semi-leptonic channel
 - Top mass scan

- need more precision in
 - W mass, Top mass and weak mixing angle
- CEPC can provide more precise measurement for

W/Z and Higgs mass and weak mixing angle

Fundamental constant	δx/x	measurements
$\alpha = 1/137.035999139 (31)$ From	1×10 ⁻¹⁰	$e^{\pm} g_2$
$G_F = 1.1663787 (6) \times 10^{-5} \text{GeV}^{-2}$	1×10-6	μ^{\pm} lifetime
$M_Z = 91.1876 \pm 0.0021 \text{ GeV}$	1×10-5	LEP
$M_W = 80.379 \pm 0.012 \text{ GeV}$	1×10-4	LEP/Tevatron/LHC
$sin^2\theta_W = \ 0.23152 \pm 0.00014$	6×10-4	LEP/SLD
$m_{top} = 172.74 \pm 0.46 \text{GeV}$	3×10-3	Tevatron/LHC
$M_H = 125.14 \pm 0.15 \text{ GeV}$	1×10-3	LHC

W mass direct measurement

- The Z, W, and Higgs bosons can be well separated in CEPC.
- Benefitted from excellent jet energy resolution and PFA based calorimeter
- Possible to measure W mass from direct di-jet mass reconstruction.

