

Depleted monolithic active pixel sensor (DMAPS) – R&D towards high-radiation and high-rate environment

CEPC 2018

Tianyang Wang

CMOS pixels (in commercial processes) for HEP

First MAPS-based vertex detector

MIMOSA28 (ULTIMATE) for STAR Design led by IPHC Strasbourg Twin-well 0.35 μm CMOS Rolling shutter => ~200 μs int. time ~ 0.16 m² => 356 M pixels

ALPIDE for ALICE Design led by CERN Quadruple-well 0.18 μm CMOS Sparse r.o. matrix => 10 μs int. time ~ 10 m² => 12 G pixels

Still many to come Mu3e, CBM-MVD, sPHENIX, ... Future e⁺-e⁻ colliders ? HL-LHC (p-p) ?

2011 2016 Beyond 2018

- R&D motivated by the need of highly granular sensors with very low material budget
 - Especially attractive and already successful for heavy-ion experiments
 - Proposed also for future e⁺-e⁻ collider experiments
- Progressively evolve towards higher radiation tolerance and faster readout
 - Exploit advances in commercial CMOS technologies + dedicated designs => HL-LHC (p-p) ?

Depleted MAPS for ATLAS @ HL-LHC

 Strong R&D momentum in the ATLAS community to achieve radiation hard MAPS through depletion towards ATLAS @ HL-LHC

CEPC workshop 2018 - t.wang@physik.uni-bonn.de

Depleted MAPS for ATLAS @ HL-LHC

- DMAPS has already been considered for the outermost pixel layer of ATLAS ITk
 - low cost and easy module assembly
 - require significantly enhanced rad. tolerance & speed w.r.t. the well established MAPS

	STAR	ALICE-LHC	ILC	ATLAS-HL-LHC	
				Outer	Inner
Fluence [n _{eq} /cm²]	1012	1.7×10^{13}	10 ¹²	10 ¹⁵	2x10 ¹⁶
TID [Mrad]	0.2	< 3	0.4	80	> 1000
Required timing	~ 200 µs	20 µs	O(1 μs)	25 ns	25 ns
Hit Rate [kHz/mm ²]	4	10	250	1000	10 000

Non-ionizing radiation (displacement damage)
 => fast collection by drift

depletion

- Time resolution
 - => fast collection by drift
 - => fast analog FE for small time walk
 - => time stamping

- High hit rate
 - => short pulse duration (< 1 μs)
 - => high readout bandwidth
 - => massive on-chip mem.
 - (long trig. Latency > 10 μ s)

- 1. HV add-ons to apply > 50 V bias I. Peric, DOI: 10.1016/j.nima.2007.07.115
- 2. **HR substrate** wafers (or epi) $d \sim \sqrt{\rho \cdot V}$
 - 100 Ω·cm kΩ·cm
 - convergence of N_{eff} after high fluence (> 10¹⁵ n_{eq})
 acceptor removal + deep acceptor introduction

3. Multiple nested wells

- high voltage shielding
- full CMOS in pixel

4. Backside processing

- thin sensor (100 200 μ m) with backside bias
- Design mostly implemented in "medium" feature size processes 130 nm -350nm
 => AMS 350 nm, AMS/TSI 180nm, LFoundry 150 nm, GlobalFoundry 130 nm, ESPROS 150 nm, TowerJazz 180 nm, IBM T3 130 nm, STM 180 nm, ON Semi 180 nm, SOI XFAB 180 nm

Sensor design approaches

- Electronics inside charge coll. well
- Large charge collection electrode
 => resemble standard n-in-p sensor
 => no/little low field region
 => on average short(er) drift path
- Full CMOS with iso. between nw/dnw
- Large sensor capacitance (pw & dnw !)
 => noise & speed (power) penalty
 - => dedicated design to mitigate x-talk

UNIVERSITÄT BOI

- Electronics outside charge coll. well
- Very small sensor capacitance (~ 5 fF)
 => lower power budget for analog FE
- Full CMOS with deep pwell
- Less prone to cross talk
- On average **long(er)** travelling path and potentially low field region
 - => process modification for rad. hardness

Process modification – TowerJazz 180 nm CMOS

Standard process

- High res. P-type epi. (> 1 kΩ·cm)
 => typ. thickness 25 μm
- Quadruple-well
 => deep pwell shields nwell => full CMOS
- Reverse bias typ. -6 V
 - => enhanced, but not yet full depletion

Modified process

- Additional planar low dose N implant
 => improve depletion under deep pwell
 => fully depleted sensing volume possible
- Maintain small capacitance feature
- No significant circuit/layout changes

W. Snoeys et al. DOI: 10.1016/j.nima.2017.07.046

Sensor irradiation performance

- UNIVERSITÄT BONN
- Good radiation hardness of large electrode sensor proven in various prototypes

CEPC workshop 2018 - t.wang@physik.uni-bonn.de

Sensor irradiation performance

- UNIVERSITÄT BONN
- Good radiation hardness of large electrode sensor proven in various prototypes

UNIVERSITÄT BONN

- TowerJazz small electrode design in modified process showed promising results
 - > 97% efficiency after $10^{15} n_{eq}/cm^2$ at low threshold (< 100 e⁻) for 30 µm square pixel

Demonstrator chips with large scale matrix

LFoundry 150 nm CMOS

Large electrode Pixel size 50 μ m \times 250 μ m Pixel matrix 129 \times 36 Thinned down to 100 μ m T. Wang, et al.,

DOI: 10.1088/1748-0221/12/01/C01039 P. Rymaszewski et al., DOI: http://doi.org/10.22323/1.313.0045 T. Hirono, et al., DOI: 10.1109/NSSMIC.2016.8069902 K. Moustakas et al., DOI: doi.org/10.1016/j.nima.2018.09.100

AMS 180 nm CMOS

Large electrode 10/80/200/1k Ω ·cm sub. Pixel size 40µm × 130µm Pixel matrix 400 × 25 Thinned down to ~ 60 µm

I. Perić, et al., DOI: 10.1016/j.nima.2018.06.060 M. Kiehn, et al., DOI: 10.1016/j.nima.2018.07.061

TowerJazz 180 nm CMOS

Small electrode - MALTA: $36.4\mu m \times 36.4\mu m$ 512×512 pixels - TJ-Monopix: $36\mu m \times 40\mu m$ 224×448 pixels Standard/modified process Thinned down to 100 μm T. Wang, et al., DOI: 10.1088/1748-0221/13/03/C03039 I. Berdalovic, et. al, DOI: 10.1088/1748-0221/13/01/C01023

CEPC workshop 2018 - t.wang@physik.uni-bonn.de

• The two sensor design approaches lead to different analog FE choices

Charge Sensitive Amplifier

- Used for large electrode sensor
- Gain (ideally) independent of C_D => G ~ 1/C_f (Typ. C_f ~ fF)
- $\tau_{CSA} \propto \frac{C_D}{g_m \cdot C_f}$, $ENC_{thermal} \propto \frac{KT}{g_m} \frac{C_D^2}{\tau}$ => need larger g_m (power) for large C_D => typ. power 5 – 20 μ A
- In-pixel threshold trimming

• The two sensor design approaches lead to different analog FE choices

D. Kim et al., 10.1088/1748-0221/11/02/C02042

ALPIDE like amplifier

- Voltage amplifier

> Profit from small sensor capacitance> large voltage excursion @ input node

- Very compact design
 - => amplification + shaping in one stage
 - => simple inverter as discriminator
 - => no threshold trimming in ALPIDE
- Optimized power for required timing
 => ~ 500 nA for 25 ns peaking time

Readout architecture – DMAPS

UNIVERSITÄT BONN

DMAPS with synchronous matrix => time stamping in matrix

- Well established scheme in ATLAS FE-I3 like
 sufficient rate capability for ITk outer pixel layers
- Time reference distributed in the matrix
 => need small skew across the long column (~ 2cm for ITk)
- ToA & ToT recorded in pixel
- Hits read out following the token passing scheme on shared column bus
- In-pixel memories and digital r.o. logic
 - => digital cross talk, pixel size, C_D (for large electrode design)

UNIVERSITÄT BONN

<u>DMAPS with asynchronous</u> matrix => time stamping at periphery

=> Hits transferred to periphery immediately => call for massive parallelism

Shared bus by pixel groups

DMAPS with asynchronous matrix

- Analog only pixel (CSA + discri.)
 => good for cross talk to sensor, pixel size, capacitance
- All digital processing at periphery
- Complex column line routing
 - => 400 lines in two metal layers for ATLASPix
- Position dependent hit transfer latency
 - => need compensation/correction
- Larger periphery area

Monopix

MALTA

DMAPS with asynchronous matrix

- High speed bus by transferring short pulses (~ 1ns)
 => pulse generated by the pixel logic in case of hit
 => reference pulse + parallel pulses indicating hit pixel address
- Special routing and buffering to balance load on the column bus to ensure the multi-bit data arrive simultaneously at periphery
- Max. pulse propagation delay along ~ 2 cm column ~ 7.5 ns
- Fast data synchronization (~ GHz) needed at periphery
 => not in the current MALTA, implemented recently in a test chip
- Careful study needed on data collision caused by simultaneous hits on pixel groups of the same color

Test results

Results – LF-Monopix

- High BV ~ -280 V => large depletion + high field
- High and uniform efficiency even after irradiation
 - Achieved @ very low noise occupancy < 10⁻⁷/25ns/pixel
- Promising timing, and can be improved by
 - Optimization of analog FE biasing
 - Enhanced charge collection in thinned sensor through HV backbias

CEPC workshop 2018 - t.wang@physik.uni-bonn.de

Results – ATLASPix Simple

- High efficiency after 10¹⁵n_{eq}/cm² (neutron)
- Improved timing expected by correcting time walk based on ToT

CEPC workshop 2018 - t.wang@physik.uni-bonn.de

Results – MALTA & TJ-Monopix

• Low corner efficiency, especially after irradiation

MALTA, after irradiation

CEPC workshop 2018 - t.wang@physik.uni-bonn.de

Fixes to improve efficiency after irradiation

Reminder: simulation of worst case for particle impinging at pixel corner

- Simulation shows significantly improved charge collection time and less charge loss after irradiation with both proposed fixes
- New design with both fixes submitted in August 2018
- T. Kugathasan, et al., VERTEX 2018

p⁻ epitaxial layer

p⁺ substrate

NMOS

pwell

pwell

Summary

UNIVERSITÄT BONN

- Rapid progress on R&D of DMAPS for high radiation & high rate environment
 - Aiming at the outermost pixel layer of ATLAS ITk @ HL-LHC => low cost, easy assembly
 - Large demonstrator chips exist in several technologies
- Two sensor concepts pursued by the ATLAS ITk community
 - Large electrode designs are intrinsically radiation hard
 - High efficiency after $1 \times 10^{15} n_{eq}/cm^2$
 - Promising timing, but not yet fully in time efficient (25 ns)
 - Small electrode design offers low power and smaller pixels
 - Low efficiency @ pixel corner after irradiation for the current iteration
 - Fixes implemented recently in MPW
- Still many work towards a ATLAS ready chip
 - Faster timing for in-time efficiency > 95% after irradiation
 - Chip integration and verification
 - System level aspects: serial powering, data link, sensor bias, ...
 - The future is not only exciting, but also challenging...

Thank you!

Back up

UNIVERSITÄT BONN

• Deep sub-micro meter CMOS technology also offer good TID tolerance

TID

Combined with radiation hard by design for sensitive blocks

No significant performance loss after 50 Mrad

Edge TcT

A. Affolder, et al., DOI: 10.1088/1748-0221/11/04/P04007

Design challenges for LF-Monopix

- Large detector capacitance $C_d = C_{sub} + C_n + C_{pw}$
 - C_{pw} tends to be **dominant** => depends on electronics area & DNW/PW junction width
 - Timing $\tau_{CSA} \propto \frac{1}{g_m} \frac{\mathbf{C}_d}{C_f}$ - Noise $ENC_{thermal}^2 \propto \frac{4}{3} \frac{kT}{g_m} \frac{\mathbf{C}_d^2}{\tau}$ More *power* needed to compensate => $\mathbf{g}_m \propto |_d$
 - Cross talk => C_{pw} directly couples the substrate noise into the sensor
 - The minimum operation threshold may be affected

Readout architecture – hybrid example

- For high hit rate capability, one would generally need
 - □ Small pixel
 - □ High logic (memory) density

I. Perić, et al., DOI: 10.1016/j.nima.2006.05.032

- □ Fast shaping
- High data transmission bandwidth
- The so-called "column drain" readout
- Hit info. recorded in pixel
 - => time of arrival (ToA), time over threshold (ToT)
 - Hit data transferred over the column bus to EoC
 - buffers following the token-passing scheme
 - => double column organization
 - => synchronous readout @ 20 MHz
- Hits stay at periphery until trigger latency
 => read out if triggered, discard if not
- Main bottleneck is column bus congestion

M.Garcia-Sciveres, et al., DOI: 10.1016/j.nima.2010.04.101

RD53A (65 nm, 50 x 50µm²)

PixelRegionLogic

- Local hit storage within the matrix => use memory efficiently by grouping pixels into regions and exploiting the cluster feature of hits
- Hits stay in matrix until trigger latency => local trigger management
- Only transfer triggered hits to the periphery
 => relaxed column bus bandwidth requirement
- Higher logic density & smaller pixel achieved by exploiting deeper sub-micro tech. nodes

Note1: complex in-pixel logic is hard for DMAPS Note2: logic density of hybrid always > monolithic

Chip design strategy – LF/TJ-Monopix

- The goal is to demonstrate a large pixel array with column drain r.o.
 - 1 2 cm² chip size
- For design simplicity, not all the peripheries expected for the final chip are included
 - Off-chip r.o. controller by FPGA
 - No trigger memory on chip
 - => All hits r.o. sequentially via a serial link
 - No high speed (Gbps) link, serial powering, etc.

50

- Optimized for < 25 ns time walk
- Static current ~ 20 μA/pixel
- Full-custom dig. Circuit ٠
 - Minimized area => reduce C_d
 - Special low noise design, e.g. current steering circuit

Front-end

R/O logic

- We can move the in-pixel r.o. logic to the periphery
 - Discriminator output r.o. by source follower
 - Less area needed for in-pixel electronic => less C_d
 - Almost no in-pixel digital transient

=> less noise/cross talk

- Almost no signal distributed in the column
- One-to-one connection from pixel to R/O logic => Complex routing

UNIVERSITÄT BOI

Matrix overview

CMOS review t.wang@physik.uni-bonn.de

- Pixel size $36 \times 40 \,\mu\text{m}^2$ => smaller than large fill factor design
- Small sensor footprint: $2 \mu m$ diameter diode + $3 \mu m$ spacing
- Separate digital & analog region
- Full-custom digital design
 - Minimize area

• Pixel array 224 imes 448, composed of equally divided 4 sub arrays

Laboratory results – LF-Monopix

I. Caicedo, Bonn

- Breakdown @ -280 V => up to \sim 300 μ m depletion
- ToT calibrated with sources: ²⁴¹Am, terbium
- Gain 10 -12 μV/e⁻
- Typical ENC ~ 200 e⁻
- Tunable threshold down to 1400 e⁻
 - dispersion ~ 100e⁻

ToT vs. Injection

15

10

5

20

X [Pixels]

30

25

0

0.003

0.000

MALTA & TJ-Monopix – FE performance

CEPC workshop 2018 - t.wang@physik.uni-bonn.de

- Lower efficiency for region with full deep P well
- Min. operational threshold increased after irradiation
 - ~ 350 e⁻ before irrad. & ~ 550 e⁻ after irrad.

Improvement after back-side processing

- It is assumed that in the final prototype
 - 2 double columns per r.o. unit => 512 \times 4 pixels
 - 20 MHz column bandwidth: 50 ns (2 BC) per hit readout
 - => a simple math: max. allowed hit rate = 1/column bandwidth = 0.5 hit/r.o.unit/BC
- Inefficiency caused by trig. memory pileup not included here => pure matrix performance
- Data loss increases steeply beyond 600 MHz/cm² => ~ 0.44 hits/r.o.unit/BC

