Pixel design and prototype characterization in China

Yunpeng Lu

On behalf of Vertex sub-detector group

Nov. 13, 2018 / Beijing

CEPC Workshop, Nov. 2018
Outline

- Introduction
 - CEPC Silicon tracker
- Fine pixel
 - JadePix1/2, MIC4, CPV1/2
- Pixelated strip
 - SUPIX
- Summary

Note1: This talk covers only the pixel chips developed specifically for the CEPC, while other developments such as for X-ray applications are not included.

Note2: A fast timing pixel scheme to be presented by W. Wei in the TDAQ session

CEPC Workshop, Nov. 2018
CEPC and Its Beam Timing

<table>
<thead>
<tr>
<th></th>
<th>Higgs</th>
<th>W</th>
<th>Z (3T)</th>
<th>Z (2T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center-of-mass energy (GeV)</td>
<td>240</td>
<td>160</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>Number of IPs</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luminosity/IP (10^{34} cm^{-2} s^{-1})</td>
<td>3</td>
<td>10</td>
<td>16</td>
<td>32</td>
</tr>
<tr>
<td>Number of years</td>
<td>7</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Total Integrated Luminosity (ab^{-1}) - 2 IP</td>
<td>5.6</td>
<td>2.6</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>Total number of particles</td>
<td>1×10^6</td>
<td>2×10^7</td>
<td>3×10^{11}</td>
<td>7×10^{11}</td>
</tr>
<tr>
<td>Bunch numbers (Bunch spacing)</td>
<td>242 (680 ns)</td>
<td>1524 (210 ns)</td>
<td>12000 (25ns + 10% gap)</td>
<td></td>
</tr>
</tbody>
</table>

- **Continuous colliding mode**
 - Duty cycle ~ 50% @ Higgs, close to 100% @ W/Z
- **General requirement on the detector development:**
 - Precise measurement, Low power, Fast readout, Radiation-hard

CEPC Workshop, Nov. 2018
Two Detector Concepts

- **Baseline detector concept**
 - Silicon tracker + TPC
 - or Full Silicon Tracker
 - High granular calorimetry system
 - 3 Tesla solenoid
 - Muon detector

- **Alternative detector concept, IDEA**
 - Silicon pixel + Drift Chamber
 - 2 Tesla solenoid
 - Dual readout calorimeter
 - Muon chamber

CEPC Workshop, Nov. 2018
Baseline Silicon Tracker Layout

- Tracking part: Mainly microstrip
 - SIT, SET, ETD, and 3 outer disks of FTD, ETD: single-sided strips mounted back to back
 - 2 inner disks of FTD: pixel

- Vertex part: 3 double-sided pixel layers
 - Layer 1: best s.p. resolution
 - Layer 2: very fast readout

| VTX parameters | R (mm) | $|z|$ (mm) | $|\cos \theta|$ | σ (µm) |
|----------------|---------|-----------|----------------|-------------|
| Layer 1 | 16 | 62.5 | 0.97 | 2.8 |
| Layer 2 | 18 | 62.5 | 0.96 | 6 |
| Layer 3 | 37 | 125.0 | 0.96 | 4 |
| Layer 4 | 39 | 125.0 | 0.95 | 4 |
| Layer 5 | 58 | 125.0 | 0.91 | 4 |
| Layer 6 | 60 | 125.0 | 0.90 | 4 |
Performance Requirements

\(B = 3T \)

- Momentum Resolution: \(\sigma_{l/p_T} = 2 \times 10^{-5} \oplus 1 \times 10^{-3} / (p_T \sin \theta) \)
- Impact Parameter Resolution: \(\sigma_{r\phi} = 5 \mu m \oplus \frac{10}{p(GeV) \sin^{3/2} \theta} \mu m \)

- **Vertex specifications:**
 - \(\sigma_{SP} \) near the IP: \(\leq 3 \mu m \)
 - Material budget: \(\leq 0.15\% X_0 / \text{layer} \)
 - First layer located at a radius: \(\sim 1.6 \text{ cm} \)
 - Pixel occupancy: \(\leq 1 \% \)

- **Tracking specifications:**
 - \(\sigma_{SP} \): \(\leq 7 \mu m \)
 - Material budget: \(\leq 0.65\% X_0 / \text{layer} \)
Pixel Sensor Specifications

- **To achieve single point resolution**
 - Pixel size ~ 16 μm (Binary readout)

- **To lower the material budget**
 - Sensor thickness ~ 50 μm
 - Air cooling, heat load < 50 mW / cm²

- **To tackle beam-related background**
 - Fast readout 1 ~ 100 μs / frame
 - 3.4Mrad / year & $6.2 \times 10^{12} n_{eq} / (cm^2 \cdot year)$?

<table>
<thead>
<tr>
<th>Physics driven requirements</th>
<th>Running constraints</th>
<th>Sensor specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_{s.p.}$ 2.8 μm</td>
<td>Small pixel 16 μm</td>
<td></td>
</tr>
<tr>
<td>0.15% X_0 / layer</td>
<td>Thinning 50 μm</td>
<td></td>
</tr>
<tr>
<td>Material budget</td>
<td>Air cooling</td>
<td>Low power 50 mW / cm²</td>
</tr>
<tr>
<td>16 mm</td>
<td>beam-related background</td>
<td>Fast readout 1 ~ 100 μs</td>
</tr>
<tr>
<td>r of Inner most layer</td>
<td>radiation damage</td>
<td>Radiation tolerance</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.4 Mrad / year</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$6.2 \times 10^{12} n_{eq} / (cm^2 \cdot year)$</td>
<td></td>
</tr>
</tbody>
</table>

CEPC Workshop, Nov. 2018
Key factors to low power design

- Depleted sensing diode
 - Signal charge $Q \uparrow$ or cluster size \downarrow
 - Capacitance of the input node \downarrow

- Small fill factor
 - Capacitance of the input node \downarrow

- In pixel discriminator
 - Eliminate the large driving current of analog output

\[
P \propto I \propto \left(\frac{S/N}{Q/C} \right)^{2\alpha}
\]

$\alpha = 2$ for strong inversion, $\alpha = 1$ for weak inversion

CEPC Workshop, Nov. 2018
Pixel technologies

- **CMOS pixel sensor (CPS)**
 - TowerJazz CIS 0.18 μm process
 - Quadruple well process
 - Thick (~20 μm) epitaxial layer
 - with high resistivity (≥1 kΩ•cm)

- **SOI pixel sensor**
 - LAPIS 0.2 μm SOI process
 - High resistive substrate (≥1 kΩ•cm)
 - Double SOI layers available
 - Thinning and backside process
CMOS Prototype: JadePix1
(Team in IHEP)

- Diode optimization and radiation hardness study
- Two independent matrices:
 - Matrix-1: $33 \times 33 \, \mu m^2$ pixels
 - Matrix-2: $16 \times 16 \, \mu m^2$ pixels.
- A variety of diode geometries
 - Matrix-1: 20 sectors, each sector includes 48 rows and 16 columns.
 - Matrix-2: 16 sectors, each 96 rows and 16 columns.
- Analog readout
 - Source follower or voltage amplifier
 - Multiplexed to 16 analog output ports
Measurement of Diode Capacitance

- JadePix1 readout system developed at IHEP
- ^{55}Fe calibration
 - $K_\alpha = 5.9\ \text{keV},\ K_\beta = 6.5\ \text{keV}$
 - Charge Voltage Factor (CVF)
- $C_{\text{in}} = C_d + C_{\text{parasitic}}$
 - $C_{\text{in}} = 5\ \text{fF}$ on $4\ \mu\text{m}^2$ diode
 - $C_{\text{in}} = 6.15\ \text{fF}$ on $8\ \mu\text{m}^2$ diode

4 μm^2 diode, $V_{\text{diode}} \sim 1\ \text{V}$

8 μm^2 diode, $V_{\text{diode}} \sim 1\ \text{V}$
Performance after Irradiation

- JadePix-1 samples irradiated in neutron reactor to 10^{12}, 5×10^{12} and 10^{13} 1MeV n_{eq}/cm^2
- Larger diode (A3 > A1) more radiation hard as expected

Less charge collected within the cluster at high radiation levels

Calibration peaks visible after 10^{13}
DESY Test Beam

- JadePix-1 position resolution characterized with the EUDET beam telescope and the electron beams at DESY;
- Offline event reconstruction with the EUTelescope software

Irradiation and beam test -> poster by L. Chen
Overview of JadePix2

(Team in IHEP)

- Chip area: $3 \times 3.3 \text{ mm}^2$;
- Matrix: 96×112 pixels with 8 sub-matrix
- Rolling shutter mode
- Every 16 columns of digital pixel share one LVDS transmitter
 - 160 MHz clock
 - 16-to-1 serializer
- A few columns configured as analog readout
 - For calibration of sensing diode

Floorplan of JadePix2

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Analogue out buffer ($\times 12$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>A1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diode size</th>
<th>D1</th>
<th>A1</th>
<th>A2</th>
<th>D2</th>
<th>D3</th>
<th>A3</th>
<th>A4</th>
<th>D4</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 μm2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 μm2</td>
<td></td>
<td></td>
<td></td>
<td>$\times 7$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Design Version</th>
<th>Matrix size:</th>
</tr>
</thead>
<tbody>
<tr>
<td>2: Single-end</td>
<td>$1: 48 \text{ row} \times 44 \text{ col.}$</td>
</tr>
<tr>
<td>1: Differential</td>
<td>$2: 48 \text{ row} \times 4 \text{ col.}$</td>
</tr>
<tr>
<td>2: Single-end</td>
<td>$1: 48 \text{ row} \times 60 \text{ col.}$</td>
</tr>
</tbody>
</table>

| 1 | 2 | 3 | 1 | 2 | 3 | 14 |
JadePix2: Voltage Discrimination in Pixel

- Two versions of Front-end
 - Version 1: differential amplifier + dynamic latch
 - Version 2: cascaded amplifier (single-ended) + dynamic latch
Design results of JadePix2

- Offset cancellation and high precision comparator
 - FPN (Fix Pattern Noise) $\sim 20 \text{ e}^{-}$
 - TN (Temporal Noise) $\sim 7 \text{ e}^{-}$
- Optimal sensing diode selected from JadePix1
 - Positively biased
 - AC coupled to the amplifier
- Rolling shutter mode
 - 100 ns / row (Version 1), 80 ns / row (Version 2)
 - 3.7 μA / pixel (Version 1), 6.5 μA / pixel (Version 2)
- Pixel size: $22 \times 22 \mu \text{m}^{2}$
Noise Measurement on JadePix2

- S-curve measured on Version 1 pixels (differential)
 - Scan ‘Vref2’ while ‘Clamp’ closed
- ENC = 31 e⁻
 - TN ~ 11 e⁻
 - FPN ~ 29 e⁻

![Diagram of LATCH Out+ Out- AMP Vref1 Vref1 Vref_latch Vref_latch Vref2 Read Read Read Read Read Calib Calib Calib Clamp Latch Vbias Power_on Buff Row_sel Out]

Threshold Distribution
- Entries: 1536
- Mean: 0.575
- Std Dev: 0.00108

FPN: 1.08mV @ input node
Equivalent 29.1 e⁻

Temporal Noise
- Entries: 1536
- Mean: 0.0004174
- Std Dev: 0.0002302

TN: 0.4mV @ input node
Equivalent 10.8 e⁻
Overview of MIC4

Team in CCNU & IHEP

- MIC4 (MAPS In CCNU 4)
- Pixel size: 25 um x 25 um
- Matrix: 128 rows x 64 columns
- Zero suppression embedded in columns
- High speed data link 1.2Gbps

CEPC Workshop, Nov. 2018
MIC4: Pulse Height Discrimination in Pixel

- Baseline front-end: the same structure as in ALPIDE*
 - Branch current 61 nA/pixel (increased by a factor of 3)
 - Peaking time < 1 μs, duration < 3 μs

*Reference: G. A. Rinella, NIMA845

CEPC Workshop, Nov. 2018
MIC4: Pulse Height Discrimination in Pixel

- Alternative front-end: Charge sensitive amplifier + current comparator
 - Feedback capacitance 0.2 fF
 - Peaking time < 550 ns @ Qin < 1.5 ke-
 - Pulse duration < 8.3 μs @ Qin < 1.5 ke-
 - 35 nW / pixel
 - ENC: 24 e-
Fast readout architecture:

- Hit registered by the latch in each pixel;
- Row and column lines indicate the coordinates of the hit pixel within an 8*8 block; In sequence of a priority chain.
- AERD (Address-Encoder and Reset-Decoder) to select the blocks that contain hits.
Noise Measurement on MIC4

- A test system has been setup in CCNU
- S-curve measured on pixels with baseline front-end
 - Test pulse injection
- Threshold set to 69.8 mV, equivalent to 99 e⁻
 - FPN = 21.9 mV, equivalent to 31 e⁻
 - TN = 0.65 mV, equivalent to 6 e⁻
Development of SOI Pixel Sensor

- N-in-P sensor capable of full depletion
 - BNW and N⁺ as collection electrode
 - BPW available as P-spray
- Isolation of transistors
 - Buried Oxide (insulation)
 - SOI2 (grounded for shielding)
- In-Pixel ampl. & disc:
 - Signal charge ~ 4000e (in 50 μm silicon)
 - Very small Cd
 - Voltage amplifier & comparator
 - Very compact pixel ~ 16 μm pitch
Pixel design in CPV1

- CPV (Compact Pixel for Vertex)
- Sensing diode, 2 µm
 - $Cd = 1 \text{ fF}$
- Voltage amplifier, DC Gain ~ 10
 - 1 µA, power on when row selected
- Offset cancellation reset
- Inverter as discriminator
- Charge injection at Vin
 - Setting threshold
- Minimize layout area
 - $16 \times 16 \mu m^2$

<table>
<thead>
<tr>
<th>Diode diameter (μm)</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cd (fF)</td>
<td>1</td>
<td>1.8</td>
<td>2.8</td>
</tr>
</tbody>
</table>
Pixel design in CPV2

- Pixel circuit adjusted on basis of CPV1
- Discharging transistor added to Vin
 - Diode-connected NMOS
 - $V_{\text{diode}} = 0V$
 - Discharging when Vin < 0V
- CDS stage inserted between apmp. and invt.
 - Improve RTC and FPN noise
 - Setting threshold by V_{clamp}

![Pixel circuit in CPV2](image)
Chip architecture

- Rolling shutter mode
 - 100 ns / row
- 64 rows \times 64 columns
 - Half matrix has SFs in place of inverters
- Address decoder to select column & row
 - Very flexible during test
- Same architecture for CPV1/2
 - I/O compatible
 - Readout using SEABAS* DAQ system

SEABAS: SOI Evaluation Board with Si TCP/IP, by KEK
Prototype Characterization

- CPV2 thinned down to 75 µm
 - Backside P⁺ implantation after thinning
- Very low leakage current
 - ~ pA/pixel @ Vbias = -100 V
- Full depletion confirmed with 55Fe and Infrared laser respectively
 - $V_{\text{depletion}}$ ~ -30 V
- Calibration with 55Fe 5.9 keV X-ray
 - CVF = 123.3 µV/e⁻ @ Vout
 - Can be improved by Cascode amplifier
Noise Measurement

- S-curve measured on the digital pixel array
 - TN ~ 6 e⁻
 - FPN ~ 114 e⁻
Laser position scan with different intensity

- Scan across two adjacent digital pixels
- Threshold is fixed (minimum threshold without noise hit)
- Step size of 1µm
- Different beam intensity used

\[\text{Normalized response} = \frac{\text{Number of hits}}{\text{Number of pulses}} \]
Residual distribution

- RMS of residual distribution indicates its single point resolution

Residual distribution changes with beam intensity

Signal charge: 1574e^-

Entries: 393190
Mean: -0.2123
RMS: 4.117

Signal charge: 2308e^-

Entries: 393216
Mean: -0.02989
RMS: 2.556

Signal charge: 3148e^-

Entries: 393216
Mean: 0.03524
RMS: 2.999

Signal charge: 4722e^-

Entries: 393216
Mean: 0.0164
RMS: 2.751
Single Point Resolution

- Single point resolution versus signal charge
 - Obtained the best resolution of 2.3μm around signal charge 3000 e⁻
 - Low threshold is critical

[Graph showing resolution versus signal charge]
Comparison of digital pixel chips

<table>
<thead>
<tr>
<th></th>
<th>JadePix2</th>
<th>MIC4</th>
<th>CPV2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process</td>
<td>CMOS</td>
<td>CMOS</td>
<td>SOI</td>
</tr>
<tr>
<td>Pixel size</td>
<td>$22 \times 22 , \mu m^2$</td>
<td>$25 \times 25 , \mu m^2$</td>
<td>$16 \times 16 , \mu m^2$</td>
</tr>
<tr>
<td>TN (e⁻)</td>
<td>11</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>FPN (e⁻)</td>
<td>29</td>
<td>31</td>
<td>114</td>
</tr>
</tbody>
</table>
As an alternative technology option for the SIT and FTD

CMOS pixel sensor is of particular interest
- High granularity
- Low material budget
- Large single chip via stitching
- Possible cost reduction

Readout channels increased significantly
- Trade off between granularity and readout time needed
- A case study conducted for the CDR writing

Estimated occupancies of the first layers in the SIT and FTD. Pixel size of $50 \times 350 \, \mu m^2$, readout time of 10 μs assumed.
To understand charge collection in larger pixels is essential for

- Optimal pixel dimensions &
- Diode geometries

Structures in TCAD simulation

- Pixel size: 21 × 21 µm², 21 × 42 µm², 21 × 84 µm²
- A variety of diode geometries
- 1 diode per pixel
- The epitaxial layer: 18 µm & 1 kΩ·cm
- Bias voltage: 1.8 V
- Hit in the very center of pixel
- 5×5 pixel cluster
Simulation Results of Charge Collection

- Sum of charge collected by a cluster of 5 × 5 pixels
 - Larger pixels exhibit small cluster size

<table>
<thead>
<tr>
<th>Pixel</th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
<th>P5</th>
<th>P6</th>
<th>P7</th>
<th>P8</th>
<th>P9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pitch(µm)</td>
<td>21</td>
<td>42</td>
<td>84</td>
<td>21</td>
<td>42</td>
<td>84</td>
<td>21</td>
<td>42</td>
<td>84</td>
</tr>
<tr>
<td>N(D)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>F(D)(µm²)</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>5</td>
<td>18</td>
<td>18</td>
<td>15</td>
<td>44</td>
<td>50</td>
</tr>
<tr>
<td>S(D)(µm²)</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>4</td>
<td>12</td>
<td>12</td>
<td>6</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

N(D) = number of diodes in each pixel (1)
F(D) = footprint of diode (diode area + pwell opening):
5, 11, 15, 18, 44 & 50 µm²
S(D) = surface of diode: 4, 6, 8, 12 & 20 µm²
Prototype Chip using TowerJazz CIS 0.18 μm process

- SUPIX (Shandong University Pixel)
- Total sensitive area: 2 × 7.88 mm²
 - 9 submatrices corresponding to the pixel structures in the TCAD simulation
 - Each submatrix: 16 × 64
- Analog readout
 - Source follower
 - Diode-connected transistor for reset
- Rolling shutter mode
 - 32 μs integration time at 2 MHz clock frequency
 - 16 parallel analog outputs
 - 50 μA current per column
- Gate-enclosed NMOS transistors
 - To improve radiation tolerance

CEPC Workshop, Nov. 2018
The test setup consists of:

- DUT board: customized for the chip
- ADC board: provided by IHEP, the same as used for JadePix1 test
- FPGA board: firmware and DAQ software in development
- SSD high speed data storage \(\rightarrow >1\text{Gb/s} \).
Output pedestal observed via oscilloscope

- Variation of baseline measured: 10 mV peak to peak
- 55Fe source test ongoing

Persistence mode

Clock

Output pedestal

Frame out

~ 10 mV
Summary

- Pixel design of high spatial resolution, low power and fast readout is required for the CEPC silicon tracker.
- A variety of pixel chip designed specifically for CEPC as part of the R&D activities.
 - Optimization of sensing diode to improve Q/C
 - Low power low noise amplifier and discriminator in pixel
 - Fast readout architecture
- Sensing diode Q/C characterized
- Noise of different front-end characterized and compared
- Spatial resolution $< 3 \, \mu\text{m}$ demonstrated on small pitch of $16 \, \mu\text{m}$
Future Plan on R&D

- Laboratory and test-beam characterizations
- Coordination of design team for next submission
- Large area chip design
- Radiation hardness
- For time stamp @ Z-pole
 - Explore SOI 3D connection technology
 - Look for new process with smaller feature size
Thank you for your attention!

Team in IHEP:

Team in Shandong University:
J. Dong, L. Li, J. Liu, M. Wang, L. Zhang

Team in CCNU:
C. Gao, W. Ren, X. Sun, D. Wang, L. Xiao, P. Yang

Below are backup slides
<table>
<thead>
<tr>
<th></th>
<th>$Higgs$</th>
<th>W</th>
<th>$Z \ (3T)$</th>
<th>$Z \ (2T)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of IPs</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beam energy (GeV)</td>
<td>120</td>
<td>80</td>
<td>45.5</td>
<td></td>
</tr>
<tr>
<td>Circumference (km)</td>
<td></td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Synchrotron radiation loss/turn (GeV)</td>
<td>1.73</td>
<td>0.34</td>
<td>0.036</td>
<td></td>
</tr>
<tr>
<td>Crossing angle at IP (mrad)</td>
<td></td>
<td></td>
<td>16.5×2</td>
<td></td>
</tr>
<tr>
<td>Piwinski angle</td>
<td>2.58</td>
<td>7.0</td>
<td>23.8</td>
<td></td>
</tr>
<tr>
<td>Number of particles/bunch N_p $\left(10^{10}\right)$</td>
<td>15.0</td>
<td>12.0</td>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td>Bunch number (bunch spacing)</td>
<td>242 (0.68μs)</td>
<td>1524 (0.21μs)</td>
<td>12000 (25ns+10%gap)</td>
<td></td>
</tr>
<tr>
<td>Beam current (mA)</td>
<td>17.4</td>
<td>87.9</td>
<td>461.0</td>
<td></td>
</tr>
<tr>
<td>Synchrotron radiation power/beam (MW)</td>
<td>30</td>
<td>30</td>
<td>16.5</td>
<td></td>
</tr>
<tr>
<td>Bending radius (km)</td>
<td></td>
<td></td>
<td>10.7</td>
<td></td>
</tr>
<tr>
<td>Momentum compact (10^{-5})</td>
<td></td>
<td>1.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>β function at IP $\beta_1 \beta_2$ (m)</td>
<td>0.36/0.0015</td>
<td>0.36/0.0015</td>
<td>0.2/0.0015</td>
<td>0.2/0.001</td>
</tr>
<tr>
<td>Emittance ξ_1 / ξ_2 (μm)</td>
<td>1.21/0.0031</td>
<td>0.54/0.0016</td>
<td>0.18/0.004</td>
<td>0.18/0.0016</td>
</tr>
<tr>
<td>Beam size at IP σ_1 / σ_2 (μm)</td>
<td>20.9/0.068</td>
<td>13.9/0.049</td>
<td>6.0/0.078</td>
<td>6.0/0.04</td>
</tr>
<tr>
<td>Beam-beam parameters ξ_1 / ξ_2</td>
<td>0.031/0.109</td>
<td>0.013/0.106</td>
<td>0.0041/0.056</td>
<td>0.0041/0.072</td>
</tr>
<tr>
<td>RF voltage V_{RF} (GV)</td>
<td>2.17</td>
<td>0.47</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>RF frequency f_{RF} (MHz) (harmonic)</td>
<td></td>
<td>650 (2168)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural bunch length σ (μm)</td>
<td>2.72</td>
<td>2.98</td>
<td>2.42</td>
<td></td>
</tr>
<tr>
<td>Bunch length σ (μm)</td>
<td>3.26</td>
<td>5.9</td>
<td>8.5</td>
<td></td>
</tr>
<tr>
<td>Betatron tune ν_1 / ν_2</td>
<td></td>
<td></td>
<td>363.10 / 365.22</td>
<td></td>
</tr>
<tr>
<td>Synchrotron tune ν_s</td>
<td>0.065</td>
<td>0.0395</td>
<td>0.028</td>
<td></td>
</tr>
<tr>
<td>HOM power/cavity (2 cell) (kw)</td>
<td>0.54</td>
<td>0.75</td>
<td>1.94</td>
<td></td>
</tr>
<tr>
<td>Natural energy spread (%)</td>
<td>0.1</td>
<td>0.066</td>
<td>0.038</td>
<td></td>
</tr>
<tr>
<td>Energy acceptance requirement (%)</td>
<td>1.35</td>
<td>0.4</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td>Energy acceptance by RF (%)</td>
<td>2.06</td>
<td>1.47</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>Photon number due to beamstrahlung</td>
<td>0.29</td>
<td>0.35</td>
<td>0.55</td>
<td></td>
</tr>
<tr>
<td>Lifetime simulation (min)</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lifetime (hour)</td>
<td>0.67</td>
<td>1.4</td>
<td>4.0</td>
<td>2.1</td>
</tr>
<tr>
<td>F (hour glass)</td>
<td>0.89</td>
<td>0.94</td>
<td>0.99</td>
<td>42</td>
</tr>
<tr>
<td>Luminosity/IP $L \left(10^{34} \text{cm}^{-2}\text{s}^{-1}\right)$</td>
<td>2.93</td>
<td>10.1</td>
<td>16.6</td>
<td>32.1</td>
</tr>
</tbody>
</table>
Occupancy at the first Vertex layer

Here we assume 10 μs of readout time for the silicon pixel sensor and an average cluster size of 9 pixels per hit, where a pixel is taken to be 16×16 μm². The resulting maximal occupancy at each machine operation mode is below 1%.
Diode geometries compete for real estate with transistors
- **Diode area**: charge collection electrode
- **Footprint**: spacing between P/N-well is critical for low capacitance

Methods to apply bias voltage
- **Positive bias**: AC couple capacitor C_c
- **Negative bias**: threshold shift of NMOS

CEPC Workshop, Nov. 2018
Charge Collection in HR epi. layer

- Pixel cluster with four different epitaxial layers (TCAD simulation)
 - 18 μm, 1 kΩ \cdot cm
 - 20 μm, 2 kΩ \cdot cm
 - 25 μm, 2 kΩ \cdot cm
 - 30 μm, 8 kΩ \cdot cm

- Seemingly optimal charge collection in 20 μm, 2 kΩ \cdot cm
 - Maximum peak signal
 - Constrained cluster size

CEPC Workshop, Nov. 2018
Positive Bias of Diode

- Bias voltage up to 10 V
 - To measure seed/cluster signal versus V_{bias}
 - To measure the cluster size
- Optimization of C_c, V_{calib}, SF and noise
- Layout
 - $16 \times 16 \, \mu m^2$
 - Direct PAD for V_{diode}

Pixel Layout
- $16 \times 16 \, \mu m^2$
- with transistors under MIM capacitor

Direct PAD layout for V_{diode}
- $250 \times 65 \, \mu m^2$
- Without ESD
- Both sizes & power lines match with other PADs provided by foundry
Device simulation

- **Device configuration**
 - 1 kΩ·cm DSOI wafer (P substrate)
 - N⁺ electrode 2 µm in diameter
 - Pixel pitch 16 µm
 - Sensor thickness 50 µm

- **Transport of charge carriers**
 - Analyzed by TCAD tools

How to achieve s.p. resolution < 3µm?

Collected charge vs hit position

![Graph showing collected charge vs hit position.](image)
Device simulation

- Noise smearing and threshold discrimination applied numerically
 - ENC ~ 20e-
 - Threshold ~ 200e-
- Residual distribution changes with threshold
 - Low noise front-end is critical to exploit the charge sharing
 - Should note that only perpendicular tracks here
 - Detailed study → poster by Z. Wu

Residual distribution with threshold = 200 e⁻

Single point resolution vs threshold

- \(p \sqrt{12} = 4.62 \)
- \(0.5p/\sqrt{12} = 2.31 \)
Thinning process for CPV2

- Wafer thinning -> Chip dicing
 - SOIPIX collaboration
 - Thinning to 300 μm is regular
 - Thinning to 75 μm is available only on request
 - No aluminum on the backside of 75 μm chips
 - Enable backside illumination of infrared laser

Thinning process flow

1. Initial wafer thickness 700μm
2. Mechanical grinding 100μm
3. Wet etching 75μm
4. Implantation & Annealing 75μm
5. Dicing 75μm

CEPC Workshop, Nov. 2018
Leakage current

- I-V curve @ room temperature
 - Total Leakage current reaches the plateau when bias voltage is -15V
 - No breakdown up to 100 V
 - Diode current is very small both (~nA over the full matrix, 1mm2)

CEPC Workshop, Nov. 2018
Depletion measurement

- 55Fe signal Efficiency versus bias voltage
 - X-ray photons counted by analog pixel cluster
 - X-ray illuminates the sensor from backside
 - Depletion zone develops starting from the topside
 - Plateau reached @ $V_{bias} = -30V$
55Fe source calibration

- Charge voltage factor (CVF)
 - Cluster peak at 360 (ADU)
 - SF gain measured 0.87
 - CVF = 123.3uV/e- @ Vout

- Excessive C_{in}?
 - 14fF
 - Miller capacitance?

CEPC Workshop, Nov. 2018
Investigation of threshold dispersion

- Threshold dispersion 8.3 mV for inverter standalone
 - In contrast to 14 mV of complete pixels
 - Can be mitigated by improving CVF

- Leakage of NMOS transistor
 - Low Vth &
 - Very short, W/L = 0.4u/0.2u
- Vin ~ 0.5V, V_diode = 0.35V
 - Minimize integration time
Laser test setup

- 1064nm laser beam
 - Focused beam waist ~ 3.4 µm
 - Adjustable energy ~ pJ/pulse
 - Short pulse duration ~ 100 ps

- 3-dimensional stepping motor
 - Minimum step size: 0.1 µm
 - Position resolution < 1 µm

- Backside illumination
Depletion reconfirmed by laser test

- Laser signal versus bias voltage
 - Inflection point @ $V_{bias} = -27V$
 - Reconfirmed the result of 55Fe source test
 - Choosing $V_{bias} = -100V$ in the following laser scan test

CEPC Workshop, Nov. 2018