Motivation for analysing b→sll decays at CEPC

CEPC Workshop 2018

Simon Wehle IHEP, Beijing, 23.11.2018

The Flavour Anomalies

(maybe only "local" anomalies...)

The Flavour Anomalies

(maybe only "local" anomalies...)

> 3.5 σ enhanced $B \rightarrow D^{(*)} au
u$ rates

3.3 σ suppressed branching ratio of $B_s \rightarrow \phi \mu^+ \mu^-$

 $\sim 3\sigma\,$ tension between inclusive and exclusive determination of $|V_{ub}|$

 $\sim 3\sigma\,$ tension between inclusive and exclusive determination of $|V_{cb}|$

 $> 3\sigma$ anomalies in angular distributions of $B \to K^* \ell \ell$

2.6 σ lepton flavor non-universality in $B \to K^{(*)} \mu^+ \mu^-$ vs. $B \to K^{(*)} e^+ e^-$

The Flavour Anomalies

(maybe only "local" anomalies...)

> 3.5 σ enhanced $B \rightarrow D^{(*)} au
u$ rates

3.3 σ suppressed branching ratio of $B_s \rightarrow \phi \mu^+ \mu^-$

 $\sim 3\sigma~$ tension between inclusive and exclusive determination of $|V_{ub}|$

 $\sim 3\sigma\,$ tension between inclusive and exclusive determination of $|V_{cb}|$

 $> 3\sigma$ anomalies in angular distributions of $B
ightarrow {\cal K}^* \ell \ell$

2.6 σ lepton flavor non-universality in $B \to K^{(*)} \mu^+ \mu^-$ vs. $B \to K^{(*)} e^+ e^-$

The b \rightarrow s transition

Probe the SM with FCNC

Credit: W. Altmannshofer, The Flavor Puzzle

Motivation for analysing b→sll decays at CEPC | Simon Wehle | IHEP, Beijing, 13.11.2018

Motivation for analysing b→sll decays at CEPC | Simon Wehle | IHEP, Beijing, 13.11.2018

An overview of the flavour anomalies

Branching Ratio Measurement - Overview LHCb

New Physics or systematic problem?

Most simple approach: Ratio of Branching Ratios Clean observables

$$R_{K} = rac{\mathcal{B}(B^+ o K^+ \mu^+ \mu^-)}{\mathcal{B}(B^+ o K^+ e^+ e^-)}$$

$$\mathsf{R}^*_{\mathsf{K}} = rac{\mathcal{B}(\mathsf{B}^0 o \mathsf{K}^{*0} \mu^+ \mu^-)}{\mathcal{B}(\mathsf{B}^0 o \mathsf{K}^{*0} e^+ e^-)}$$

DESY.

Angular Analysis of $B \rightarrow K^*II$

Angular Analysis of $B \rightarrow K^*II$

3 decay angles: ϕ , θ_{I} , θ_{K}

DESY.

 $q^2 = M_{||}^2$

Belle 1 Angular Analysis

Results

- Many analyses have measured the angular distribution in B->K*II
- LHCb sees the largest deviation in the low q² region
- Atlas and Belle can confirm the anomaly with less significance
- CMS is in good agreement with SM

Overview of the b->sll puzzle

Combining the results

• Effective Hamiltonian approach

$$\mathcal{L}_{\text{eff}} = \sum_{i} C_i(\varrho) \mathcal{O}_i.$$

- Effective Operators O_i
- Effective Couplings C_i
- Combine measurements and fit for

 $\mathcal{C}_9 = \mathcal{C}_9^{SM} + \mathcal{C}_9^{NP}$

 $q^{15} q^{2} [\text{GeV}^{2}/c^{4}]$

10

5

Combined Fit for New Physics

Fit for New Physics

DESY

Phys. Rev. D 96, 055008 (2017)

Combined Fit for New Physics

Fit for Lepton Flavour Universality

Phys. Rev. D 96, 055008 (2017)

DESY

Where else to look?

The taus!

Discussion

DESY.

- Many new physics models imply large contributions to $b \rightarrow s \tau \tau$
- CEPC will have the unique ability to study couplings to the third lepton family

Capdevila *et al.* 1712.01919

 $B \rightarrow K^+ \tau^+ \tau^-$ at Belle

The tag side is reconstructed in more than 1000 exclusive hadronic decay channels using more than 70 neural networks

$$\mathcal{P}_{e^+} + \mathcal{P}_{e^-} = \mathcal{P}_{ ext{tag-side}} + \mathcal{P}_{ ext{signal-side}}$$

DESY.

$B \rightarrow K^+ \tau^+ \tau^-$ at Belle Preliminary study on simulated events

b \rightarrow **s** $\tau\tau$ at **CEPC**

Untagged using three prong decays of the tau

- Partial reconstruction could be sufficient
- Sensitive to
 - Polarisation
 - Angular analysis!

- Important benchmarks:
 - vertex and momentum resolution of the taus
 - vertex separation depending on q²

Untagged using three prong decays of the tau

- Partial reconstruction could be sufficient
- Sensitive to
 - Polarisation
 - Angular analysis!

- Important benchmarks:
 - vertex and momentum resolution of the taus
 - vertex separation depending on q²

 $B \to K^+ \tau \tau, B \to K^* \tau \tau, B \to \phi \tau \tau, B_s \to \tau \tau$

Tagged in single prong decays

- Signal side efficiency an order of magnitude higher
- Dependent on the efficiency of the B-tagging algorithm this would be a viable option

- $B \to K^+ \tau \tau, B \to K^* \tau \tau, B \to \phi \tau \tau, B_s \to \tau \tau$
- Ζ b q R q

- Challenges
 - Spatial separation of B tracks
 - Backgrounds

Tagged in single prong decays

- Signal side efficiency an order of magnitude higher
- Dependent on the efficiency of the B-tagging algorithm this would be a viable option

 $B \to K^+ \tau \tau, B \to K^* \tau \tau, B \to \phi \tau \tau, B_s \to \tau \tau$

- Challenges
 - Spatial separation of B tracks
 - Backgrounds

Inclusive

- Inclusive decays offer very clean
 theoretical observables
- Important benchmarks:
 - Kaon identification
 - K_S finding
- Possible problems
 - difficult to estimate spectator

 $\mathbf{B}_{s} \rightarrow \tau \tau$

$B_{d,s} ightarrow au au$

- LHCb measurement using $\tau \to \pi^- \pi^+ \pi^- \nu_\tau$
- ► $\mathcal{B}(B_s^0 \to \tau^+ \tau^-) < 6.8 \times 10^{-3} (95\% \text{CL})$
- $\mathcal{B}(B^0_d \to \tau^+ \tau^-) < 2.1 \times 10^{-3} (95\% \text{CL})$

 $\mathscr{B}_{SM}(B_s \to \tau \tau) = \sim 10^{-7}$

- LHCb currently sets the strongest limits on B→ττ but is missing the constraint from the other b
- CEPC can be leading this analysis

 $\mathbf{B}_{s} \rightarrow \tau \tau$

 $B_{d,s}
ightarrow au au$

- LHCb measurement using $\tau \to \pi^- \pi^+ \pi^- \nu_\tau$
- $\mathcal{B}(B_s^0 \to \tau^+ \tau^-) < 6.8 \times 10^{-3} (95\% \text{CL})$
- $\mathcal{B}(B^0_d \to \tau^+ \tau^-) < 2.1 \times 10^{-3} (95\% \text{CL})$

 $\mathscr{B}_{SM}(B_s \to \tau\tau) = \sim 10^{-7}$

- LHCb currently sets the strongest limits on B→ττ but is missing the constraint from the other b
- CEPC can be leading this analysis

Untagged using three prong decays of the tau

Ζ

B tagging:

b

- Partial reconstruction should be sufficient
- Full decay solvable at CEPC

- Important benchmarks:
 - vertex and momentum resolution of the taus
 - B mass resolution

Other Analyses

- LHCb has difficulties with mass resolution of decays with electrons in the final state
 - LFU tests in angular observables can be competitive with Belle II
 - Benchmark: q2 resolution and mass resolution for B → K* II
- Probing Lepton Flavour Violating decays

$$B \to K^{(*)} \tau l$$

• CEPC might have the unique opportunity to measure

$$R_{K^{(*)}}^{ au/e}, R_{K^{(*)}}^{ au/\mu}$$

Conclusions

- $b \rightarrow s \tau \tau$ decays are a promising candidate to find physics beyond the SM
 - CEPC could play a dominant role to investigate these decays
 - If the anomalies persist, CEPC will have excellent prospects studying NP effects in couplings to the third generation of leptons
- Important features
 - good K/ π separation
 - Bremsstrahlung recovery for electrons
 - vertex resolution for tau three prong decays
- Best experimental setup for $B_s \rightarrow \tau \tau!$

Thank you very much for your attention!

Contact

DESY. Deutsches Elektronen-Synchrotron

www.desy.de

Simon Wehle Belle & Belle II simon.wehle@desy.de +49 40 4994 3789

Advantages at e⁺e⁻ colliders

DESY.

Missing Energy Channels

Full Event Interpretation (FEI)

- Hierarchical approach
 - Multivariate classifier for each state
 - Gather all information in the signal probability
- FEI can provide hadronic and semileptonic final states

Maximum reconstruction efficiency			
Тад	FR @ Belle	FEI @ Belle	FEI @ Belle II
Hadronic B ⁺	0.28 %	0.49 %	0.61 %
Semileptonic <i>B</i> ⁺	0.67 %	1.42 %	1.45 %
Hadronic <i>B</i> ⁰	0.18 %	0.33%	0.34 %
Semileptonic B ⁰	0.63 %	1.33%	1.25 %

$B \rightarrow K^{+}\tau^{+}\tau^{-}$ at Belle

- $\mathcal{B}(B^+ \to K^+ au au)^{SM} < 1.44(15) \times 10^{-7}$
- Some models may lead to a strong enhancement
- $\mathcal{B}(B \to K \tau^- \tau^+)^{MLFV} < 2 \times 10^{-4}$

Alonso, R., Grinstein, B. & Camalich, J.M. J. High Energ. Phys. (2015) 2015

• Only experimental constraints by BaBar with $\mathcal{B}(B^+ \to K^+ \tau^+ \tau^-) < 2.25 \times 10^{-3}$ at 90% C.L..

 $B \rightarrow K^+ \tau^+ \tau^-$ at Belle

The tag side is reconstructed in more than 1000 exclusive hadronic decay channels using more than 70 neural networks

$$\mathcal{P}_{e^+} + \mathcal{P}_{e^-} = \mathcal{P}_{\text{tag-side}} + \mathcal{P}_{\text{signal-side}}.$$

DESY.

$B \rightarrow K^+ \tau^+ \tau^-$ at Belle Preliminary study on simulated events

