

Tau Reconstruction in CMS

2018 CEPC Workshop, Beijing

Thomas Müller on behalf of the CMS Collaboration

the Large Hadron Collider

$C_{ompact} M_{uon} S_{olenoid} \quad at the \quad L_{arge} H_{adron} C_{ollider}$

FRANCE

Particle Flow

Reconstruct physics objects from combined subdetector information

Reconstruct and identify 5 classes of particles:

```
\triangleright electrons
                         ▷ photons
                                                 charged/neutral hadrons
                                                                                                ▷ muons
```

Reconstruct and identify hadronic tau decays based on detailed information of jet constituents

Tau Decays in CMS

Hadron Plus Strips Algorithm

- 1. Seeds: particle-flow constituents (e^{\pm} , γ , h^{\pm} , h^{0} , μ^{\pm}) of reconstructed anti- $k_{\rm T}$ jets with R = 0.4
 - Good tracks: $p_{\mathrm{T}} > 0.5 \,\mathrm{GeV}$
 - Compatibility of tracks with a primary vertex (relaxed in x-y)
- 2. Identify all **possible combinations** for τ_h decay modes:

 $\tau^{\pm} \rightarrow [1,3]h^{\pm} + [0-2]\pi^{0} + \nu_{\tau} \\ \pi^{0} \rightarrow \gamma\gamma$

 γ + material \rightarrow e^+e^-

Signature of π^0 decays: activity in $\Delta \eta \times \Delta \varphi$ region (strip)

► Signal cone size: $0.1 \ge R_{sig} = \frac{3 \text{ GeV}}{p_T} \ge 0.05$

Hadron Plus Strips Algorithm

- 1. Seeds: particle-flow constituents (e^{\pm} , γ , h^{\pm} , h^{0} , μ^{\pm}) of reconstructed anti- $k_{\rm T}$ jets with R = 0.4
 - Good tracks: $p_{\mathrm{T}} > 0.5 \,\mathrm{GeV}$
 - Compatibility of tracks with a primary vertex (relaxed in x-y)
- 2. Identify all **possible combinations** for τ_h decay modes:
 - $\tau^{\pm} \rightarrow [1,3]h^{\pm} + [0-2]\pi^{0} + \nu_{\tau} \\ \pi^{0} \rightarrow \gamma\gamma$
 - $\gamma + \text{material} \rightarrow e^+e^-$
 - Signature of π^0 decays: activity in $\Delta \eta \times \Delta \varphi$ region (strip)
 - ► Signal cone size: $0.1 \ge R_{sig} = \frac{3 \text{ GeV}}{p_T} \ge 0.05$
- 3. Quality criteria:
 - Charge of τ_h candidate is ± 1
 - Compatibility of τ_h mass with intermediate resonances: $\rho(770)$ and $a_1(1260)$
- 4. Retain τ_h candidate with highest p_T

Hadron Plus Strips Algorithm

CMS DP-2018/026

III. Physikalische Institut B

Discrimination of τ_h **Candidates against Jets**

 \blacktriangleright τ leptons are produced and decay via weak interaction

- No color charge involved
 - → Decays isolated from hadronic activity
- ▶ Long lifetime τ_{τ} (50 GeV) \approx 2.5 mm
 - → Displaced tracks and decay vertices
- Small mass $m_{ au} = 1.778 \, {
 m GeV}$
 - → Low particle multiplicity

Discrimination of τ_h **Candidates against Jets**

CMS TAU-16/003

- No color charge involved
 - → Decays isolated from hadronic activity
- ▶ Long lifetime $au_{ au}$ (50 GeV) pprox 2.5 mm
 - → Displaced tracks and decay vertices
- Small mass $m_{ au} = 1.778 \, {
 m GeV}$
 - → Low particle multiplicity
- MVA discrimination (BDT) based on
 - Charged/neutral isolation sums
 - Lifetime information
 - (impact parameter, flight length)
 - \triangleright Reconstructed τ_h decay mode
 - Particle multiplicities
 - Differential strip information

Identification Performance in MC

CMS TAU-16/003

- ► 6 MVA (+ 3 cut-based) working points provided
 - \triangleright BDT thresholds adjusted as a function of $p_{\rm T}$
 - \triangleright Constant efficiencies from 30 to 70%
- Performance estimation in MC (w.r.t. relevant phase space)
 - \triangleright Identification efficiency from $Z \rightarrow \tau \tau \ {\rm MC}$

 $\epsilon = \frac{\text{generated } \tau_h \& \text{ reconstructed and good } \tau_h}{\text{generated } \tau_h}$

▷ Misidentification probability from QCD multijet MC $p = \frac{\text{generated } q/g \text{ jet } \& \text{ reconstructed and good } \tau_h}{p}$

generated q/g jet

Identification Performance – Comparison of Data and MC

- \triangleright Use $Z/\gamma * \rightarrow \tau \tau \rightarrow \mu \tau_h + 3\nu$ events
- ▷ Tag events with good muon
- \triangleright Probe τ_h candidate matched to generator level τ

Scale factor obtained from simulataneous max. likelihood fit of signal+background to data in both categories

Identification Performance – Comparison of Data and MC

Measure efficiency in data with Tag & Probe method

 \triangleright Use $Z/\gamma * \rightarrow \tau \tau \rightarrow \mu \tau_h + 3\nu$ events

III. Physikalische

200

- ▷ Scale factor obtained from simulataneous max. likelihood fit of signal+background to data in both categories
- ▶ Similar measurements in $t\bar{t}$ and off-shell $W \rightarrow \tau \nu$ events
 - \triangleright Cover large range in $p_{\rm T}$ of τ_h candidate

- ▷ 2 working points
- \triangleright Misidentification probabilities smaller than 0.5%
- ▶ BDT discriminator against electrons faking τ_h
 - ▷ 5 working points
 - > Efficiencies and scale factors measured via Tau & Probe

Tau Energy Scale Corrections

1.0

*m*_{τ.} (GeV)

Events / bin

Obs/Exp

1.0

0.6

0.5

0.8

35.9 fb⁻¹ (2016, 13 TeV) 35.9 fb⁻¹ (2016, 13 TeV) ×10³CMS 35.9 fb⁻¹ (2016, 13 TeV) ×10³CMS $\times 10^3$ CMS Events / bin Events / bin 20 20 E 20 $h^{\pm}\pi^{0}$ decay mode $h^{\pm}\pi^{0}$ decay mode $h^{\pm}\pi^{0}$ decay mode Observed Observed • Observed 18 16 14 12 τ_ь ES -6% 18**E** 18 τ_h ES +6% $\Box Z/\gamma^* \rightarrow \tau\tau$ $Z/\gamma^* \rightarrow \tau\tau$ $\Box Z/\gamma^* \rightarrow \tau\tau$ 16**E** 🔲 tī 16 tī tī l t other DY other DY other DY 14 E 14 Electroweak Electroweak Electroweak 12**F** 12 QCD multijet QCD multijet QCD multijet 10 Uncertainty 10**E** Uncertainty Uncertainty 8 8 Obs/Exp Obs/Exp 1 4 14 1.2 1.2 1.2

1.0

 $m_{\tau_{\rm h}}$ (GeV)

×10⁻³

25

20

Correction to τ_{h} energy scale in MC

1.0

0.8

06

0.5

- \triangleright τ_h energy scale = factor to scale four-momentum of τ_h
- ► Measure correction to MC from max. likelihood fit of mass templates to data
 - \triangleright Visible $\mu + \tau_h$ mass for all τ_h decay modes separately $\triangleright \tau_h$ mass for $h^{\pm}\pi^0$ and $h^{\pm}h^{\pm}h^{\mp}$ decay modes
 - \triangleright Corrections at 1% level observed

alues from

 $h^{\pm}\pi^{0}$

 $h^{\pm}h^{\pm}h$

h[±]

Application in Physics Analyses – Examples

Conclusion

- \triangleright Hadron+Strips τ_h reconstruction
- MVA discriminators for identification
- Measurement of scale factors and corrections from data
- Robust \(\tau_h\) reconstruction and identification
- Good agreement between data and simulation
- Successfully used in numerous published analyses

Additional Material

BDT Inputs for Discrimination against Jets

CMS PAS TAU-16/002

III. Physikalisches Institut B

Jet $\rightarrow \tau_h$ Misidentification Probabilities in Data

CMS TAU-16/003

BDT Inputs for Discrimination against Electrons

CMS PAS TAU-16/002

Discrimination of τ_h **Candidates against Muons**

Some CMS Numbers

Solenoid

- \triangleright Superconducting coil, 3.8 T inside, 2 T outside
- ▷ 12.5 m length, 3.15 m inner radius

Tracker

 \triangleright Silicon strips and pixels, 1.20 m outer radius, 4-3 + 11-10 layers

Electromagnetic calorimeter

- \triangleright Lead tungstate (PbWO₄) crystals, ~25 radiation lengths
- \triangleright Barrel: 2.2 \times 2.2 cm² (2.2 cm Molière radius), equivalent to $\Delta \eta \times \Delta \varphi = 0.0174 \times 0.0174$
- \triangleright Endcap: 2.9 \times 2.9 cm²

▷ Energy resolution:
$$\frac{\sigma_E}{E} = \frac{2.8\%}{\sqrt{E/\text{GeV}}} \oplus \frac{12\%}{E/\text{GeV}} \oplus 0.3\%$$

Hadronic calorimeter

 \triangleright Brass absorber + plastic scintillator tiles, ~6-10 radiation lengths

ho $\Delta\eta imes\Deltaarphi=$ 0.087 imes 0.087 to 0.17 imes 0.17

$$\triangleright \text{ Energy resolution: } \frac{\sigma_E}{E} = \frac{110\%}{\sqrt{E/\text{GeV}}} \oplus 9\%$$

Muon system

- ▷ DTs (barrel), CSCs (endcal), RPCs (everywhere)
- $\triangleright\,$ Tracker dominates momentum measurement up to $p_{\mathrm{T}}\approx200\,\mathrm{GeV}$

Tracking Performance

Tracking Performance

TrackingPOGPerformance2017MC

Inctitut R

