Can we separate the ZZ and WW events with 4-jets full hadronic final state ? Performance study of the 4-jet final state event reconstruction at the CEPC Baseline

Yongfeng Zhu

IHEP

2018年11月13日

Outline

- Introduction
- Sample
- Separation performance
- Catalogue
- Impact factor
- Conclusion

э

Introduction

At CEPC : Jet is very important

- $W \rightarrow hadrons: 67.41\%$
- $Z \rightarrow hadrons: 69.91\%$
- Higgs \rightarrow hadrons: 69.1%
- EW(Triplet Gauge Boson Coupling), and Higgs measurements.

3

イロト イヨト イヨト イヨト

Sample

Yongfeng Zhu (IHEP)

イロト イロト イヨト イヨト 一日

Pairing 4 jets

M12, M34, M13, M24, M14 and M23

Yongfeng Zhu (IHEP)

5/21

ж

イロト イポト イヨト イヨト

Pairing 4 jets

M12, M34, M13, M24, M14 and M23

ж

イロト イポト イヨト イヨト

Separation performance

$0.5 \times (M12 + M34)$

Separation performance

ee genkt algorithm : R = 2, P = 1

GenJet overlaping ratio : 57.24%

Yongfeng Zhu (IHEP)

э

Separation performance

cut : |M12 - M34| < 10

GenJet overlaping ratio : 32.37%

WW selection ratio : 59.07% ZZ selection ratio : 47.10%

RecoJet overlaping ratio : 45.48% WW selection ratio : 54.01%

ZZ selection ratio : 43.8%

(1日) (日) (日)

Yongfeng Zhu (IHEP)

ъ

 ΔR

- MCTruth level (Bosontru)
- GenJet level (Bosongen)
- RecoJet level (Boson_{reco})

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・

 $\Delta R = \Delta R_1 \times \Delta R_2$

$$\Delta R_1 = \sqrt{(\theta_{boson1_{tru}} - \theta_{boson1_{reco/gen}})^2 + (\phi_{boson1_{tru}} - \phi_{boson1_{reco/gen}})^2}}$$

$$\Delta R_2 = \sqrt{(\theta_{boson2_{tru}} - \theta_{boson2_{reco/gen}})^2 + (\phi_{boson2_{tru}} - \phi_{boson2_{reco/gen}})^2}}$$

Yongfeng Zhu (IHEP)

ъ

 ΔR

Characterize jet clustering performance into five sub-categories according to ΔR . Each category contains 20% events.

Yongfeng Zhu (IHEP)

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・

At GenJet level :

Yongfeng Zhu (IHEP)

11/21

æ

・ロト ・四ト ・ヨト ・ヨト

Category

The overlaping ratio variates with the jet clustering performance.

Yongfeng Zhu (IHEP)

→

Category

Yongfeng Zhu (IHEP)

æ

Impact factor

- neutrinos in heavy-flavor quarks decay
- initial state radiation (ISR)

< ∃⇒

A D > A D > A

Yongfeng Zhu (IHEP)

P = ? R = ? for ee_genkt_algorithm when WW/ZZ \rightarrow 4 quarks

overlap ratio

	P = -1	P = 0	P = 1	P = 2	P = 3
<i>R</i> = 2.5	88.60%	84.57%	62.71%	65.04%	68.28%
<i>R</i> = 2	89.03%	84.57%	62.71%	65.04%	68.28%
R = 1	100.00%	96.44%	66.85%	69.24%	73.67%

Answer : R = 2, P = 1

イロト イヨト イヨト イヨト

(i) Jet is very important for CEPC.

ж

- (i) Jet is very important for CEPC.
- (ii) WW and ZZ events with 4-jet full hadronic final state can be separated at CEPC.

ъ

イロト イタト イヨト イヨト

- (i) Jet is very important for CEPC.
- (ii) WW and ZZ events with 4-jet full hadronic final state can be separated at CEPC.
- (iii) Using ee_kt_algorithm, the overlaping ratio is 57.24% and 62.71% at GenJet level and RecoJet level, respectively.

イロト イタト イヨト イヨト

- (i) Jet is very important for CEPC.
- (ii) WW and ZZ events with 4-jet full hadronic final state can be separated at CEPC.
- (iii) Using ee_kt_algorithm, the overlaping ratio is 57.24% and 62.71% at GenJet level and RecoJet level, respectively.
- (iv) After setting cut |M12 M34| < 10, the overlaping ratio is 32.37% and 45.48% at GenJet level and RecoJet level, respectively.

3

イロト イヨト イヨト イヨト

- (i) Jet is very important for CEPC.
- (ii) WW and ZZ events with 4-jet full hadronic final state can be separated at CEPC.
- (iii) Using ee_kt_algorithm, the overlaping ratio is 57.24% and 62.71% at GenJet level and RecoJet level, respectively.
- (iv) After setting cut |M12 M34| < 10, the overlaping ratio is 32.37% and 45.48% at GenJet level and RecoJet level, respectively.
- (v) The separation performance is highly depending on jet clustering performance.

イロン イボン イモン イモン 三日

- (i) Jet is very important for CEPC.
- (ii) WW and ZZ events with 4-jet full hadronic final state can be separated at CEPC.
- (iii) Using ee_kt_algorithm, the overlaping ratio is 57.24% and 62.71% at GenJet level and RecoJet level, respectively.
- (iv) After setting cut |M12 M34| < 10, the overlaping ratio is 32.37% and 45.48% at GenJet level and RecoJet level, respectively.
- (v) The separation performance is highly depending on jet clustering performance.
- (vi) Neutrinos in heavy flavor quarks decay and initial state radiation have impact on separation performance.

イロン イボン イモン イモン 三日

Thanks !

Yongfeng Zhu (IHEP)

◆□> <団> < E> < E> E のQ@

Back Up

Yongfeng Zhu (IHEP)

fastjet

- jet: a collimated spray of stable particles arising from the fragmentation and hadronisation of a parton after a collision
- fastjet: a tool used to do jet clustering, in other words, find the parton as accurate as possible
- two main classes of jet clustering algorithms in use: cone algorithm and sequential clustering algorithms
 - cone algorithm assume that particles in jets will show up in conical regions and thus they cluster based on $\eta \phi$ space
 - sequential clustering algorithms assume that particles within jets will have smaller differences in transverse momenta and thus groups particles based on momentum space.

イロン イロン イヨン イヨン 三日

sequential clustering algorithm

a similar method
$$\begin{cases} d_{ij} = min(P^a_{ti'}, P^a_{tj}) \times \frac{R^2_{ij}}{R} \\ d_{iB} = P^2_{ti} \end{cases}$$

- a : corresponding to a particular clustering algorithm
- $R_{ij}^2 = (\eta_i \eta_j)^2 + (\phi_i \phi_j)^2$ is the $(\eta \phi)$ space distance between the two particles
- R is the radius parameter which determines the final size of the jet.
- $d_{iB} = P_{ti}^{a}$: the momentum space distance between the beam axis and the detected particle
- a smaller R can reduce the amount of the underlying event and pile-up captured by the jet, preventing the overestimation of the jets mass and energy
- a larger R allows the jet to capture enough of the hadronised particles

イロン 不得 とくほど 不良 とうほう

at CEPC

- pp collisions: emphasize invariance under boosts along the beam axis since, thus the natural variables are transverse momenta P_t , azimuthal angle ϕ and pseudo-rapidity $\eta = -ln(tan(\theta/2))$
- e^+e^- collision: rotational invariance, thus the natural variables are energies E and polar angles θ, ϕ

So the equation of sequential clustering algorithm:

ee_genkt_algorithm
$$\begin{cases} d_{ij} = min(E_i^{2p}, E_j^{2p}) \times \frac{1 - cos\theta_{ij}}{1 - cosR} \\ d_{iB} = E_i^{2p} \end{cases}$$

イロン イボン イモン イモン 三日