SPPC Overview

Jingyu Tang for the SPPC study group

CEPC Workshop, Nov. 12-14, 2018, IHEP

Outline

- Ongoing SPPC study
- Collider accelerator physics
- Technical issues
- Injector chain
- Plan for CDR writing
- Summary

Ongoing SPPC Study

- CEPC CDR final version published on web
 - IHEP-CEPC-DR-2018-01/IHEP-AC-2018-01
 - SPPC as one chapter (Ch.8) and contributes one section (Sec.11.16, HFM)
- Ongoing studies
 - Almost no budget available for continuing the SPPC study, except HFM R&D supported by the CAS Pioneering Program; Chen Yukai obtained a NSFC Youth Fund
 - Weaker manpower since this year, mainly some students working on accelerator physics studies
 - R&D efforts on high-field magnets maintain

SPPC main parameters (no update)

Parameter	Unit		Value	
		PreCDR	CDR	Ultimate
Circumference	km	54.4	100	100
C.M. energy	TeV	70.6	75	125-150
Dipole field	Т	20	12	20-24
Injection energy	TeV	2.1	2.1	4.2
Number of IPs		2	2	2
Nominal luminosity per IP	cm ⁻² s ⁻¹	1.2e35	1.0e35	-
Beta function at collision	m	0.75	0.75	-
Circulating beam current	А	1.0	0.7	-
Bunch separation	ns	25	25	-
Bunch population		2.0e11	1.5e11	-
SR power per beam	MW	2.1	1.1	-
SR heat load per aperture @arc	W/m	45	13	-

Collider Accelerator Physics

-Parameter list (no update since 2017.5)

Parameter		Value	Unit	Total / inelastic cros
Main parameters	s			Reduction factor in 1
Circumference		100	km	Full crossing angle
Beam energy		37.5	TeV	me hunch length
Lorentz gamma		39979		ms IP spot size
Dipole field		12.00	т	Bata at the 1st parasi
Dipole curvature 1	radius	10415.4	m	me coot size at the 1
Arc filling factor		0.780		Stored operations be
Total dipole magn	net length	65442.0	m	Stored energy per de
Arc length		83900	m	SR power per mig
Total straight sect	ion length	16100	m	Critical photon energy
Energy gain factor	r in collider rings	17.86		Energy loss per turn
Injection energy		2.10	TeV	Energy loss per turn
Number of IPs		2		Damping partition in
Revolution freque	ncy	3.00	kHz	Damping partition in
Revolution period	l .	333.3	μs	Damping partition in
Physics perform	ance and beam param	ieters		I ransverse emittance
Nominal luminosi	ty per IP	1.01E+35	cm ⁻² s ⁻¹	Longitudinal emittar
Beta function at in	nitial collision	0.75	m	
Circulating beam	current	0.73	Α	
Nominal beam-be	am tune shift limit per	0.0075		
Bunch separation		25	ns	
Bunch filling fact	or	0.756		
Number of bunch	es	10080		
Bunch population	L	1.5E+11		
Accumulated part	icles per beam	1.5E+15		
Normalized rms tr	ransverse emittance	2.4	μιm	
Beam life time du	e to bum-off	14.2	hour	
Turnaround time		3.0	hour	
Total cycle time		17.2	hour	

Total / inelastic cross section	147	mbarn
Reduction factor in luminosity	0.85	
Full crossing angle	110	µrad
rms bunch length	75.5	mm
rms IP spot size	6.8	μm
Beta at the 1st parasitic encounter	19.5	m
rms spot size at the 1st parasitic encoun	34.5	μm
Stored energy per beam	9.1	GJ
SR power per ring	1.1	MW
SR heat load at arc per aperture	12.8	W/m
Critical photon energy	1.8	keV
Energy loss per turn	1.48	MeV
Damping partition number	1	
Damping partition number	1	
Damping partition number	2	
Transverse emittance damping time	2.35	hour
Longitudinal emittance damping time	1.17	hour

Accelerator Physics

- Lattice, layout, dynamics aperture: Chen Yukai
- Collimation: Yang Jianquan, Zou Ye (Uppsala U.), Tang Jingyu, A. Faus-Golfe (LAL)
- Beam-beam, Luminosity leveling: Lijiao Wang, K. Ohmi (KEK), T. Sen (FNAL)
- Longitudinal dynamics (collider and injector chain): Zhang Linhao
- Instabilities: Liu Yudong, Zhang Linhao
- Injector chain AP: Hong Yang (MSS), Wang Xiangqi and Liu Tao (USTC, SS), Zhang Linhao (p-RCS)

Lattice design

Chen Yukai

- Some work focusing on
 - Lattice optimization
 - Dynamics tracking
 - Some kind of interaction with the CEPC lattice, about how to keep the CEPC machine and detector when SPPC will be built.
 Some complicated detouring methods were studied.

Longitudinal beam dynamics

- The work concerning long. Dynamics in both Collider and injector chain
- Concerns:
 - Bunch filling schemes
 - Luminosity leveling schemes
 - Instabilities
 - Requirement to the RF systems
 - Global study with the injector accelerators
- Recent study focusing on:
 - RF frequency choice (collider) with relation to instabilities (200+ 400 + 800 MHz)
 - Bucket matching between different accelerator stages

Zhang Linhao

Beam-beam effects

Lijiao Wang, collaborating with K. Ohmi and T. Sen

- Beam-beam effect has direct impact to the luminosity
- The work continues with detailed simulations and calculations, with different factors and effects.
 - Head-on interaction
 - Long-range interaction
 - Pacman effects
 - Orbit effects
 - Coherent beam effects
 - BB compensation methods (Electron lens, Compensation wires)
- Wang Lijiao just went to Fermilab to work with T. Sen for one year

SPPC: normal bunch (164 LRBBI) Pacman bunch (82~164 LRBBI)

$$\mathcal{L} \propto oldsymbol{\xi} rac{1}{eta_y} N n_b f_r$$

Beam Collimation

Jianquan Yang, Ye Zou (Uppsala U.), collaborating with LAL and LHC

Huge stored energy: 9.1 GJ/beam

- This important work continues with detailed simulations
- Yang Jianquan just went to LAL for six months (Faus-Golfe)
- Requirements
 - SC magnet quench prevention:

$$\tilde{\eta}_{c} = \frac{\tau_{\min} \cdot R_{q}}{N_{tot}^{q}} \qquad \begin{array}{c} \text{Rq: $\sim 10^{6}$ protons/m/s} \\ N_{tot}^{q} : 1.5 \times 10^{15} \\ \tau_{\min}: 0.2 \text{ h} (10 \text{s}) / 5 \text{ h} \end{array} \qquad \begin{array}{c} \tilde{\eta}_{c} < 3.5 \times 10^{-7} \text{ m}^{-1} \\ \end{array}$$

- Machine protection: prevent damaging radiation-sensitive devices
- Radiation localization: hands-on maintenance
- Halo particles cleaning
- Cleaning physics debris: collision products
- Optimizing background: in the experiments

Technical Challenges

- R&D efforts for high field SC magnets
 - See yesterday's talk and the incoming talk by Xu Qingjin
- Beam screen
 - Zhu Kun and his student did good paper work, but no continuing with R&D due to lack of funding
- High-Q RF cavities
 - Still looking for fund to do the R&D

Injector chain (for proton beam)

MSS: Medium-Stage Synchrotron

SS: Super Synchrotron

Ion beams have dedicated linac (I-Linac) and RCS (I-RCS)

Major parameters for the injector chain (no update)

	Value	Unit		Value	Unit
p-Linac			MSS		
Energy	1.2	GeV	Energy	180	GeV
Average current	1.4	mA	Average current	20	uA
Length	~300	m	Circumference	3500	m
RF frequency	325/650	MHz	RF frequency	40	MHz
Repetition rate	50	Hz	Repetition rate	0.5	Hz
Beam power	1.6	MW	Beam power	3.7	MW
p-RCS			SS		
Energy	10	GeV	Energy	2.1	TeV
Average current	0.34	mA	Accum. protons	1.0E14	
Circumference	970	m	Circumference	7200	m
RF frequency	36-40	MHz	RF frequency	200	MHz
Repetition rate	25	Hz	Repetition period	30	S
Beam power	3.4	MW	Protons per bunch	1.5E11	
			Dipole field	8.3	Т

Summary

- SPPC contributed one chapter and one section in the CEPC CDR report
- SPPC general study will continue with a low profile, and efforts to seek NSFC funds are encouraged
- R&D efforts on high-field SC magnets will remain as the main activity within SPPC in the next few years
- We will follow the CEPC evolution in the TDR design phase

THANK YOU!