The CEPC Detector Conceptual Design Report

International Workshop on High Energy Circular Electron Positron Collider 6 November 2017

João Guimarães da Costa (IHEP, Chinese Academy of Sciences)

Conceptual Design Report (CDR) – Status

Pre-CDR completed in 2015

- No show-stoppers 0
- Technical challenges identified \rightarrow R&D issues

- Today: Draft-0 preliminary chapters available for discussion Chapter 3: Detector concepts (partial)
- - Chapter 4: Vertex detector
 - * Chapter 5: Tracking system (TPC, silicon tracker, silicon-only concept, drift chamber) ***** Chapter 6: Calorimeter (PFA and DR calorimeter options)

 - * Chapter 7: Magnet system
 - ***** Chapter 8: Muon system

 - * Chapter 10: MDI, beam background and luminosity measurement Chapter 11: Physics performance (partial)

(http://cepc.ihep.ac.cn/preCDR/volume.html)

- **Detector and Physics Conceptual Design Report (CDR)**
 - Goal: A working concept on paper, including alternatives

timer

Conceptual Design Report (CDR) – Status

- No show-stoppers 0
- Technical challenges identified \rightarrow R&D issues

- **Spring 2018: Planned release date Soon** after CEPC accelerator CDR is released
- From this workshop till publication: ***** Plenty of opportunities for everyone to contribute ***** Lots of room to make a serious impact

Nov 10-11: Informal CDR Mini-review http://indico.ihep.ac.cn/event/7384/

More definite schedule available towards end of November

Pre-CDR completed in 2015

(http://cepc.ihep.ac.cn/preCDR/volume.html)

- **Detector and Physics Conceptual Design Report (CDR)**
 - **Goal: A working concept on paper, including alternatives**

Organization of the Physics and Detector Working Group

Executive: Joao Barreiro Guimaraes Costa (IHEP) Yuanning Gao (Tsinghua Univ.) Shan Jin (Nanjing Univ.)

Machine Detector Interface

Hongbo Zhu

Vertex

Ouyang Qun Sun Xiangming Wang Meng

Tracker

Qi Huirong Yulan Li

Ruan Mangi Li Gang Li Qiang Fang Yaquan

Conveners

Physics analysis and detector optimization

http://cepc.ihep.ac.cn/~cepc/cepc_twiki/index.php/Physics_and_Detector

Detector and Physics Parallel Sessions

Session

Today, 16:00 (3-days) Today, 16:30 Tuesday, 8:00 Tuesday, 8:00 Tuesday, 10:30 Tuesday, 14:00 Tuesday, 16:30 Tuesday, 16:30

Poster session (many CDR details will be provided) I: Detector concepts and system aspec⁻ II: Silicon vertex and tracker III: Gaseous detectors IV: Calorimeters V: Simulation VI: Physics, joint with theory MDI

Unairs

CDR Chapter

((**A** []))

ts	Massimo Caccia JGC	3: Conditions and concep 7: magnet
	Daniela Bortolleto Meng Wang	4: Vertex detector 5: Tracking system
	Yuanning Gao Soeren Prell Charles Young	5: Tracking system 8: Muon system
	Roberto Ferrari Imad Laktineh Jianbei Liu	6: Calorimetry
	Sasha Glazov Manqi Ruan	11: Physics performance
	Patrizia Azzi Yaquan Fang	11: Physics performance
	Suen Hou Michael Sullivan	10: Interaction region

CDR Password: cdr2018-0draft

CDR Conceptual Designs

Baseline detector for CDR ILD-like (similar to pre-CDR)

Low magnetic field concept

Final two detectors likely to be a mix and match of different options

Full silicon tracker concept

CEPC baseline detector: ILD-like

Magnetic Field: 3 Tesla — changed from preCDR

• Impact parameter resolution: less than 5 µm • Tracking resolution: $\delta(1/Pt) \sim 2 \times 10^{-5}$ (GeV-1) • Jet energy resolution: $\sigma_F/E \sim 0.3/\sqrt{E}$

- m /-1)
- Flavor tagging
- BR(Higgs → µµ)
- W/Z dijet mass separation

CEPC baseline detector: ILD-like: Design Considerations

Major concerns being addressed

MDI region highly constrained L* increased to 2.2 m **Compensating magnets**

TPC as tracker in high-luminosity Z-pole scenario

ECAL/HCAL granularity needs Passive versus active cooling

Magnetic Field: 3 Tesla — changed from preCDR

•Impact parameter resolution: less than 5 µm • Tracking resolution: $\delta(1/Pt) \sim 2 \times 10^{-5}$ (GeV-1)

• Jet energy resolution: $\sigma_{\rm F}/E \sim 0.3/\sqrt{E}$

- Flavor tagging
- BR(Higgs $\rightarrow \mu\mu$)
- W/Z dijet mass separation

Low magnetic field detector concept

Proposed by INFN, Italy colleagues

Magnet: 2 Tesla, 2.1 m radius

Thin (~ 30 cm), low-mass (~ $0.8 X_0$)

- Beam pipe: radius 1.5 cm
- **Vertex:** Similar to CEPC default
- Drift chamber: 4 m long; Radius ~30-200 cm
- **Preshower:** ~1 X₀
- **Dual-readout calorimeter: 2 m/8 λ_{int}**
- (yoke) muon chambers

Integrated into Conceptual Design Report **Dual readout calorimeter: Chapter 6 Talk: Session IV - Roberto Ferrari**

> **Drift chamber: Chapter 5** Talk: Session II - Franco Gancagnolo

Muon detector (µRwell): Chapter 8 Talk: Session IV - Paolo Giacomelli

Full silicon tracker concept

Replace TPC with additional

CEPC-SID:

6 barrel double strip layers 5 endcap double strip layers

Drawbacks: higher material density, less redundancy and limited particle identification (dE/dx)

SIDB: SiD optimized 5 barrel single strip layers 5 endcap double strip layers

CDR: Section 5.3

Full silicon tracker concept

Replace TPC with additional silicon layers

$ZH \rightarrow vv\mu\mu$ **Di-muon mass**

CEPC Baseline $\sigma = 0.24 \text{ GeV}$

Drawbacks: higher material density, less redundancy and limited particle identification (dE/dx)

Session I: Weiming Yao CDR: Section 5.3

CEPC-SID: $\sigma = 0.21$ GeV

SIDB: $\sigma = 0.26$ GeV

Superconductor solenoid development Updated design done for 3 Tesla field (down from 3.5 T)

Default is NbTi Rutherford SC cable (4.2K) Solutions with High-Temperature SC cable also being considered (YBCO, 20K)

Session I: Zian Zhu CDR: Chapter 7

Can consider design for 2 Tesla magnet, if needed

Superconductor solenoid development Shield Solenoid : R 6.5m, L 10m Updated design don

cept improved by FCC studies

Con

Default: Iron Yoke

Non-uniformity

9.1%

Interaction region: Machine Detector Interface

One of the most complicated issue in the CEPC detector design

Full partial double ring

Session MDI: Chenghui Yu CDR: Chapter 10

Updated baseline parameters:

Head-on collision changed to crossing angle of 33 mrad Focal length (L*) increased from 1.5 m to 2.2 m Solenoid field reduced from 3.5 T to 3 T

Magnet	Field Strength	Length	Inner Radiu
QD0	151 T/m	1.73m	19 mm

Interaction region: Machine Detector Interface Machine induced backgrounds

- Radiative Bhabha scattering
- **Beam-beam interactions**
- Synchrotron radiation
- Beam-gas interactions ightarrow

Higgs operation $(E_{cm} = 240 \text{ GeV})$

Rates at the inner layer (16 mm): Hit density: ~2.5 hits/cm²/BX 2.5 MRad/year TID: 10¹² 1MeV n_{eq}/cm² NIEL:

(Safety factors of 10 applied)

Session MDI: Hongbo Zhu CDR: Chapter 10

Studies for new configuration being finalized

Silicon Vertex Detector

Requirements

- Single point resolution near the IP: $\leq 3 \mu m \rightarrow high granularity$
- Material budget: $\leq 0.15\%X_0/layer \rightarrow Low power dissipation, thinned$
- Pixel occupancy: $\leq 1\%$ -> High granularity and/or short readout time

3-layers of double-sided pixel sensors

Session II: Qun OUYANG CDR: Chapter 4

Target:

★ High granularity ★ Fast readout **★** Low power dissipation ★ Light structure

	R(mm)	z (mm)	$ cos \theta $	$\sigma(\mu m)$	Readout time
Layer 1	16	62.5	0.97	2.8	20
Layer 2	18	62.5	0.96	6	1-10
Layer 3	37	125.0	0.96	4	20
Layer 4	39	125.0	0.95	4	20
Layer 5	58	125.0	0.91	4	20
Layer 6	60	125.0	0.90	4	20

Table 4.1: Vertex detector parameters

(us)

Silicon Vertex Detector

Transverse impact parameter resolution for single muon

Session II: Qun OUYANG CDR: Chapter 4

Pixel sensor R&D

R&D by CCNU, Shandong, Huazhong universities and IHEP

- 1st CMOS sensor (CPS) test: modified versions of both mother board and daughter board finished
- 2nd CMOS sensor (CPS) submission: digital prototypes design at IHEP & CCNU - First with in-pixel digitization; readout structure study - Taped-out in May of 2017 (process: TowerJazz CiS 180nm)

	Rolling shutter mode		Global shutter mode	
In-pixel front-end	2 stage single end version	Differential version	Self designed	ALPIDE-like
			+Digital processing	
Pixel size	$22 \times 22 \text{ um}^2$ $33\% \downarrow \text{vs}$	ASTRAL chip	25×25 um ² 20%	%↓vs ALPIDE chip

1st Silicon-on-Insulator (SOI) sensor (CPV1) test: in progress 2nd SOI sensor (CPV2) design:

- Pixel size: 16 µm×16 µm
- Digital readout
- Thinning to 75 µm

Session II: Qun OUYANG CDR: Chapter 4

Sensor size: **3-4** mm²

Silicon Tracker Detector

SIT links VTX with **TPC**

Between TPC and calorimeter

Session II: Qun OUYANG CDR: Chapter 5

Barrel: SET (Silicon External Tracker), r = ~1.8 m Endcap: ETD (Endcap Tracking Detector), z = ~2.4 m

Time Projection Chamber (TPC)

- Allows for particle identification
- Low material budget
- 3 Tesla magnetic field —> reduces diffusion of drifting electrons
- Position resolution: ~100 μ m in r ϕ
- Systematics precision (<20 μm internal)
- GEM and Micromegas as readout
- **Problem: Ion Back Flow —> track distortion** • Operation at $L > 2 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1} 2$

Session III: Huirong Qi CDR: Chapter 5

TPC detector concept

nd activities

(2016~2020) ISFC (~3.5 Million RMB) a (2016~2020) Million RMB) aphene @Shandong

Time Projection Chamber (TPC)

TPC readout with micro-pattern gaseous detectors (MPGDs)

New: Micromegas + GEM

Session III: Huirong Qi CDR: Chapter 5

IBF: Ion Back Flow reduced to 0.19%

Indication that TPC operation would be feasible at high-luminosity Z factory

Drift Chamber Option

Follows design of the KLOE and MEG2 experiments

- Length: 4 m **Radius: 0.3-2m** Helium gas Material: aiming for 1% X₀
- •

Layers: 14 SL × 8 layers = 112 Cell size: 12 - 14 mm

Stereo angle: 50-250 mrad

Session III: Franco Grancagnolo CDR: Chapter 5

Lead by Italian Colleagues

- Spatial resolution: < 100
- dE/dx resolution: 2 Max drift time: 150 msec
- Material: aiming for 1% X₀

Prototype being tested

Calorimeter options

Chinese institutions have been focusing on Particle Flow calorimeters

R&D supported by MOST, NSFC and IHEP seed funding: \$1 M RMB

New

Electromagnetic	ECAL with Silico ECAL with Scinti
	SDHCAL with RP
Hadronic	HCAL with ThGE
	HCAL with Scint

Dual readout calorimeters (INFN, Italy + Iowa, USA)

n and Tungsten (LLR, France) illator+SiPM and Tungsten (IHEP + USTC)

PC and Stainless Steel (SJTU + IPNL, France) EM/GEM and Stainless Steel (IHEP + UCAS + USTC) Ellator+SiPM and Stainless Steel (IHEP)

Dual Readout Calorimeter

Lead by Italian colleagues

Session IV: Roberto Ferrari CDR: Chapter 6

Trigger : $(T_1 \cdot T_2 \cdot \overline{T_H})$

Muon detector

Baseline Muon detector

- 8 layers
- Embedded in Yoke
- Detection efficiency: 95%

Technologies considered

Monitored Drift Tubes Resistive Plate Chambers (RPC) Thin Gap Chambers (TGC) Micromegas Gas Electron Multiplier (GEM) Scintillator Strips

Baseline: Bakelite/glass RPC

Session III: Liang Li CDR: Chapter 8

New technology proposal: µRwell

Muon system: open studies

Full simulation samples with full detec

yoke and magnet system

Further layout optimization: N layers
Effect as a tail catcher / muon tracket
Jet energy resolution with/without
Gas detectors: Study aging effects, in

reliability and stability

All detectors: Improve massive and la procedures, readout technologies.

Exotics/new physics search study, e.g. long lived particles

Optimization based on particle flow oriented detector and **full simulation Geant4**

Some studies done with fast simulation

DRUID, RunNum = 0, EventNum = 23

Session V: Li Gang CDR: Chapter 11

K_L shower reconstructed by the Arbor algorithm

Detector optimization: Benchmark measurements

Results in CDR not fully updated for the 3 Tesla magnetic field and latest geometry

Z boson

decay

Flavor Tagging & JER: Br = 14%

Composition of Jet/MET, lepton: Br = 4%

Jet Clustering: Br = 50%

Photon/ECAL: Br = 0.2% Muon/Track: Br = 0.03%

qqH, H->inv. MET & NP: SM Br = 0.1%

EW, Br(tau->X) @ Z pole: **Separation**

Detector optimization

	Optimized (C
B Field	3 Tesla
TPC radius	1.8 m
TOF	50 ps
ECAL thickness	84 mm
ECAL cell size	10 mm
ECAL num. layers	20
HCAL thickness	1 m
ECAL num. layers	40

Comments

Required from beam emmitance

Required by $Br(H \rightarrow \mu\mu)$ measurement

Pi-Kaon separation at Z pole

Optimized for $Br(H->\gamma\gamma)$ at 250 GeV

Maximum for EW measurements, better 5 mm but passive cooling needs 20 mm

Depends on silicon sensor thickness

Optimized for Higgs at 250 GeV

Optimization of TPC radius and B-field

BR(H→µµ) measurement

Final remarks **Work towards the CEPC Detector CDR is well advanced *** Two significantly different concepts are emerging **High-magnetic field**: with TPC or full-silicon tracker ***** Low-magnetic field: with drift chamber and dual readout calorimeter **Significant amount of R&D on-going in China *** Vertex detector, TPC, calorimeters, magnets **Still a lot of work to do, and newcomers are welcome Colleagues from Italy heavily involved** * Drift chamber, dual readout calorimeter and muon chamber International collaborations expanding INFN, SLAC, Iowa State Univ., Belgrade, LLR, IPNL, LC-TPC,...

Preliminary CDR draft-0 to be released at parallel sessions

CDR Password: cdr2018-0draft

* Participation either as an author or a reviewer is very much appreciated

Expected final release: Spring 2018

Extra Slides

$V(\partial x_1) \cdot (\partial x_2) \cdot (\partial x_3)$

Simulation of Ion Back Flow Z pole run @ $L = 10^{34}$ cm⁻²s⁻¹

Track distortions due to space charge effects of positive ions

Micromegas + GEM

Simulation and preliminary tests indicate this scheme can provide IBF ~ 0.1-0.2%

Simulation^Fresults to be published Experiments and module R&D will continue

International collaboration with Saclay and LCTPC

Research supported by MOST and NSFC

Current Funding Situation

R&D issues identified and funding request underway

Seed money from IHEP: 12 M RMB/3 yrs NCDR: ~0.8 B RMB/5 yr, failed in a voting process

CAS: 8M/yr

MOST: 36 M RMB/5 yrs approved, +~40 M RMB expected next year NSFC: ~12M RMB/4 yrs approved \rightarrow 6 M RMB/yr to be approved

- New sources of funding **Beijing Municipality:** part (~1/3) of 490M RMB
- NSFC: hopefully ~50 M/yr (under discussion)

Detector and Physics: Conceptual Design Report CDR Challenges

- Manpower for making simulation and studies of different options by September
- * Need help, specially from international partners
- Technical design challenges:
- \Rightarrow MDI design and compensating magnets = > affects solenoid field
- ***** TPC operation at large rates
- ***** Beam energy measurement
- ***** Luminosity measurement
- **O** Benchmarks
 - ***** Higgs physics
 - ***** Electroweak physics at Z pole and WW threshold

