CEPC: optimization of the PFA Oriented detector

concept

Manqi Ruan

Parameters

	CEPC_v1 (~ ILD)	Optimized (Preliminary)	Comments	
Track Radius	1.8 m	>= 1.8 m	Requested by Br(H->µµ) measurement	
B Field	3.5 T	3 T	Requested by MDI	
ToF	-	50 ps	Requested by pi-Kaon separation at Z pole	
ECAL Thickness	84 mm	84(90) mm	84 mm is optimized on Br(H->γγ) at 250 GeV; 90mm for bhabha event at 350 GeV	
ECAL Cell Size	5 mm	10 – 20 mm (5 mm)	Passive cooling request ~ 20 mm. 10 mm should be highly appreciated for EW measurements – need further evaluation	
ECAL NLayer	30	20 – 30	Depends on the Silicon Sensor thickness	
HCAL Thickness	1.3 m	1 m	-	
HCAL NLayer	48	40	Optimized on Higgs event at 250 GeV; Margin might be reserved for 350 GeV.	

Tracker Radius & B-Field: the optimized value

- Detector cost is sensitive to tracker radius, however, I recommend TPC radius >= 1.8m:
 - Better separation & JER
 - Better dEdx
 - Better (H->di muon) measurement

B-Field VS JER

3.5T & 48 Layers

3T & 40 Layers

3T & 48 Layers

- Marginal Impact on JER (from 3.5T -> 3T)
- 3 Tesla even turns out to be better than 3.5 Tesla (~only 1 sigma)
 - At 5 mm Cell size

ECAL Absorber (W) thickness Via H->үү

30 Layers, each layer with 0.5 mm Si + 2 mm PCB ECAL only performance

Optimization on the in-homogeneous longitudinal structure (i.e, Absorber thickness at different layer) not applied

HCAL thickness (#Layers) Via JER ~ vvH, H->gluons

Reducing the #Layers from 48 -> 40 (same layer thickness) A degrading of 2% (relative) in JER

Performance depends on the version...

Calorimeter Optimization: Cell Size

- No Power Pulsing + Passive Cooling Calorimeter
 - Number of channels reduce by~10 times, test Geometries with 10-20 mm ECAL/HCAL Cell + reduced layers
 - Percentage level degrading in signal reco. efficiency on Higgs Benchmarks
 - Photon & H->photons
 - Lepton & Higgs recoil
 - Jets & H->gluons,
 - H->WW*

No lose in the object level efficiency: JER degraded, ~ 5/10% at 10/20 mm

7

20/4/2017

Key performance: Separation

Figure 11. Event display of reconstructed di-photon.

Separation power/Crucial Distance:

- ~ 2*Cell with Cell Size <= Moliere Radius;
- ~ 1 Cell with Cell Size > 1 Moliere Radius.

Impact of Separation: Z->tau tau @ Z pole

5 -> 20 mm: May severe degrade Tau physics performance -> to be investigated

Conclusion & Todo

- PFA oriented detector design: OK at CEPC
 - 3 Tesla Solenoid
 - TPC is OK
 - Passive cooling Calo:
 - No significant impact on Higgs physics
 - EW Physics: to be further evaluated
- Several key R&D issue identified
- Converged to an set of reference number.
- To be covered at CDR
 - Converge the MDI/FWD concept design
 - Full Sim Analysis on Physics Benchmarks at Conceptual geometry
 - Signal Sample is READY
 - Identify people to study them in details!!!

20/4/2017

Back up

PFA Oriented concept: A preliminary design

Dedicated ToF Or ECAL Layer with TDC Equipped Chips

delta(T) ~ 50 ps

To balance the efficiency & Purity of time measurement...

Tracker, TPC: R = 1.8 m

ECAL: 84-90 mm W

HCAL: ~1000 mm Iron

Solenoid (3T) + Yoke

Optimization

- PFA Oriented Concept: Optimizing Via Sim-Reconstructions
 - Layout:
 - VTX: High precision Silicon Pixel placed close to the IP
 - Main Tracker:
 - Silicon Tracker
 - TPC
 - Calorimeter: Ultra-high granularity
 - Feasibility Study
 - TPC
 - Passive cooling Calorimeter
 - Parameter optimization
- The Alternative Concept: Dual Readout + Wire Chamber
 - To be implemented in Full Simulation &

TPC Feasibility

- Voxel occupancy: $1.0^{-4} 1.0^{-6}$ level
- Distortion induced by Ion charge:

- 1/10 of the intrinsic TPC resolution if k (IBF*Gain) = 5
20/4/2017

TPC dEdx & future optimizations

- TPC dEdx + ToF at dt ~ 50 ps: a full range of pi-kaon separation (3-4 σ) at Z pole
- Be iterate with hardware study & Test beam: Quantify the hardware requirements
- TPC in general:
 - Stability & Homogeneity requirement
 - Radiation Background, Gas optimization (Neutron Flux, Delta/Gamma Ray)

- BSM interest: models with Higgs decaying preferably to muons
- ggF, VBF, VH, ttH production
- Backgrounds: Zjets, tŦ, WW

		µ-hat error		
	ℒ(fb⁻l)	Scenario I	Scenario 2	
ATLAS	300	± 0.39	± 0.38	
CMS	300	± 0.42	± 0.40	
ATLAS	3000	± 0.16	± 0.12	
CMS	3000	± 0.20	± 0.14	

ATLAS scenarios: 1- full sys 2- no theory sys CMS scenarios: 1- run-1 sys 2- reduced sys

CMS NOTE-13-002

П

Benchmark measurements

20/4/2017

Separation

Left: Inclusive Samples Right: Light flavor Sample with Visible ISR Photon Veto

Impact of Jet Clustering: Significant

Jet Clustering is Mainly responsible for the tails

Jet energy Scale

Amplitude ~ 1% Large JES observed at Leading Jet (Correlated), and at overlap region (Increasing of Splitting) 2/11/2017 20

Jet Energy Resolution

CMS Reference: CMS-JME-13-004,

Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV