

Single track simulations

UPDATES

<u>CGEM software meeting</u> <u>November 16, 2017</u>

I. Garzia, Università degli studi di Ferrara

Single track simulation

- CGEMBoss software 6.6.5.b and Boss version 665p01
- All detectors included in the simulation
- "fixpt" generator used to generate single particle tracks
- 10000 protons, muons, kaons, electrons and pions
 - pt=(0.1, 0.15, 0.2, 0.3, 0.7) GeV/c
 - -0.93<cos(theta)<0.93
- 10000 pions with pt = 60 MeV/c and 80 MeV/c
- Difference in Reconstruction:
 - 665p01: #include "\$MDCXRECOROOT/share/jobOptions_MdcPatTsfRec.txt" (Runge-Kutta)
 - CGEMBoss: #include "\$MDCXRECOROOT/share/jobOptions_MdcPatTsfRec_NoRK.txt"
- Observables:
 - reconstructed pt before and after the reconstruction
 - vertex resolution after the Kalman fit
 - Efficiency vs. pt and efficiency vs. $\cos(\theta)$
- Bugs fixed in the simulation (non uniform magneti field setting)
 - old setting: BesSim.Field =1 (responsible of the small shift at low pt values and in the xyRes distributions)

Muons: pt reco

Vertex resolution

I. Garzia

Pull Distributions

MUONS summary: vertex resolution vs. pt

- Consistency of the vertex resolution in the XY plane
- Strong improvement of the vertex resolution along the z direction for CgemBoss (by a factor of about 3)

MUONS summary: efficiencies

I. Garzia

Protons

Protons: pt = 200 MeV/c

Protons: pt = 700 MeV/c

Vertex resolution for protons

Pull distributions for protons

PROTONS summary: vertex resolution vs. pt

- Better resolution in Boss665p01 for pt>0.5 GeV/c, worse for lower momenta
- Strong improvement of the vertex resolution along the z direction for CgemBoss (by a factor of about 3)

PROTONS summary: efficiencies

I. Garzia

14

KAONS summary: vertex resolution vs. pt

- Better resolution in Boss665p01 for pt>0.4 GeV/c, worse for lower momenta
- Strong improvement of the vertex resolution along the z direction for CgemBoss (by a factor of about 3)

KAONS summary: efficiencies

Electrons summary: vertex resolution vs. pt

- Better resolution in Boss665p01 for pt>0.2 GeV/c, slightly worse for lower momenta
- Strong improvement of the vertex resolution along the z direction for CgemBoss (by a factor of about 3)

I. Garzia

Electrons summary: efficiencies

- The resolution is always lower for CgemBoss (know problem due to the matching procedure)
- Efficiency vs. cos(θ):
 - similar as for muons
 - for low pt, larger loss of efficiency in CgemBoss at the boundaries and in the central region (perpendicular to the beam direction)
- Pull distributions (see bk slides): consistent with the expectations for pt>100 MeV/c

Pions summary: vertex resolution vs. pt

- Better resolution in Boss665p01 for pt>0.2 GeV/c, worse for lower momenta
- Strong improvement of the vertex resolution along the z direction for CgemBoss (by a factor of about 3)

Pions summary: efficiencies

I. Garzia

- The resolution is always lower for CgemBoss (know problem due to the matching procedure)
- Efficiency vs. cos(θ):
 - for low pt, larger loss of efficiency in CgemBoss at the boundaries and in the central region (perpendicular to the beam direction)
- Pull distributions (see bk slides): consistent with the expectations for pt>100 MeV/c

Soft pions (pt<100 MeV/c)

Soft pions (pt<100 MeV/c)

nstereo hits

What is the distribution for pions with large pt? (pt > 100 MeV/c)

nstereo hits

- Good tracks reconstruction for pt > 100 MeV/c For pt<100 MeV/c
 - few pions reach the stereo hits of the Outer DC
 - the matching between ODC and CGEM fails: if no tracks are reconstructed in the ODC, there is no matching and the track is not reconstructed. This is the reason of the low efficiency for low momentum tracks
- The comparison between CgemBoss and Boss-665p01 without the IDC gives consistent distributions
 - proof of the previous conclusion

Conclusions

Single track simulation

- Useful to identify bugs, problems, and to find possible solutions
- Pt shift problem to low values w.r.t. the nominal one was understood and fixed
 - BesSim.Field =1 option, which call a uniform magnetic field
- Efficiencies vs. pt and $cos(\theta)$ studied for pions, muons, electrons, protons and kaons
 - CgemBoss efficiency lower than Boss due to the matching between CGEM and ODC
- Vertex resolution
 - HUGE improvement of the vertex resolution along the z direction of about a factor 3
 - Almost consistent in the XY plane
 - Pull distributions consistent with the expectations

From soft pion studies we can conclude that the matching procedure between CGEM and ODC is not sufficient to reach a reasonable reconstruction efficiency

• Hough transform could help to solve this problem

BK slides

KAONS: Pull distributions

PIONS: Pull distributions

ELECTRONS: Pull distributions

29

Cgemboss vs Boss-hoidc

