

Some considerations on the CMOS sensors for CEPC MOST-2

Wei Wei

CEPC-MOST 2 Mini-workshop

2017-11-23

Outline

- General requirement
 - Specifications
 - Chip architecture
- Overall plan of the chip design
- Open questions and discussion

- What are we going to do?
 - To design a chip with full functionality, and to build a prototype ladder with several layers mounted
 - Very limited time
 - ➤ 5 years in total, 3.5 years for the chip final design
 - Therefore:
 - It is very unlikely that we have parallel designs (not like MOST-1)
 - Have to be very focused on a unique chip design
 - Chip design tasks might be divided into blocks
 - The requirement, spec., interface of the chip have to be determined asap
 - Real design can be initiated asap to earn time

General requirement- from CEPC MOST 1

6

To achieve S.P. resolution

- Digital pixel ~ 16um
- Analog pixel ~ 20um (power pulsing mode in ILC)

To lower the material budget

- Sensor thickness ~ 50um
- Heat load < 50 mW/cm² constrained by air cooling

To tackle beam-related background

- 20us/frame?
- 300krad/year & 3×10¹²neq/ (cm²·year)?

Physics driven requirements	Running constraints	Sensor specifications
σ _{s.p.} 2.8um Material budget 0.15% X ₀ /layer		Small pixel 16um
Material budget	> Air cooling	> Ininning 50um > low power 50mW/cm ²
r of Inner most layer 16mm	> beam-related background > radiation damage	> fast readout 20us?
L	> radiation damage	> radiation tolerance ≤1 Mrad/ year ?
		$\leq 1 \times 10^{12} n_{eq} / (cm^2 year)$?

Summarize from Zhang Y.'s slides

Status of CEPC MOST-1

- Initial sensor R&D targeting on
 - Pixel pitch ~16 μm
 - Power consumption <100 mW/cm²
 - Integration time 10-100 μs
- CPS design
 - More focused, with major man power
 - All designs on Tower Jazz 0.18µm CIS process
 - ➤ sharing tapeout with CERN and IPHC
 - two versions of tapeouts
 - > 1st ver.: only pixel sensors, analog readout
 - > 2nd ver.: in-pixel digitization, parallel design on readout scheme
 - rolling shutter readout (IHEP) 22μm×22μm/ async. readout (CCNU) 25μm×25μm
 - Chip periphery: voltage DACs, readout logic, analog chain
- SOI design
 - Develop in-pixel circuit for minimum layout area
 - SOI-collaboration between IHEP & KEK
 - Two ver. of tapeouts: 16μm×16μm in-pixel discrimination

Experiences and comments from CEPC MOST-1

- Pixel size
 - Aiming for 16μm×16μm, however very challenging in the current process (not even reported worldwide)
 - > Achieved in the SOI efforts, but very little room left for any more func.
- Readout time
 - Aiming for a fast readout < 10us, final goal 1us?</p>
 - Also very challenging under the power consumption constraints
- Power: aiming for 50mW/cm2 as the final goal
 - Less periphery block integrated (some are hot elements: LDO/ Interface)
 - A brief evaluation: not achieved so far
- Wafer thining
 - Not possible so far (MPW and sharing tapeout)
- Simulation consistency
 - Still needs careful test to prove
- Comments and questions
 - To meet the final goal for CEPC is really challenging
 - No prior success of the similar chips worldwide
 - > most of them are done by more experienced engineers than us
 - Should we really be so aggressive on specs? Or maybe we should be conservative because we need to build a real ladder in very limited time

MIMOSA-26 chip architecture

Main characteristics of MIMOSA26 sensor equipping EUDET BT:

- Solumn // architecture with in-pixel Amp & CDS and end-of-col. discrimination, followed by Ø
- $\$ Active area: 21.2×10.6 mm² ,1152 x 576 pixels, pitch: 18.4 µm $\rightarrow \sigma_{sp.} <~4$ µm
- 𝔅 Read out time <~ 100 µs (10⁴ frames/s) → suited to >10⁶ particles/cm²/s
- Sield ~90% (75% fully functional sensors thinned to 120 μm + 15% (showing one bad row or column)
- $\, \$ \,$ Thinning yield to 50 μm ~90%

ATLAS CMOS-1 Sensor Overview

Readout in double column structure either

synchronously or asynchronously

Periphery

- End of Column Logic
- Common blocks to interface to ITk

ATLAS CMOS-1 from H. Pernegger, ATLAS ITk week June 2017

From Walter Snoeys

Common Periphery Block Diagram (based heavily on RD53A)

Chip overall architecture – CEPC MOST-1

CEPC CPS v2

- Compared with the exist chips, it seems that we have almost full func. in pixels
- Current chip only integrates basic periphery blocks and basic logics
- Q: do we need more complex readout logic
 - Depends on event rate, occupancy, and bunch crossing structure
 - If high, we probably need on chip RAM and some level of trigger
- Q: do we need other commonly used blocks: LDO, PLL
 - Very likely
 - Otherwise system design less compact: onboard components
 - > Material budget issues
 - On-board component tends to be less radhard than on-chip rad-hard design

Consideration of the CEPC MOST-2 sensor

- A chip aiming for prototype + full funcs. + time is short !
- 1st: Specs. need to be fixed
 - Better do not be too optimistic
- Borrow the experience and designs from MOST-1
 - Especially the pixel design
 - But it better that the pixel size be further shrinked
- Should we try other processes?
 - TJ 0.18μm:
 - ➤ existed experience, but pixel size limits already reached
 - Has to coordinate the tapeout schedule with collaborators- not good for a time limit project
 - XX 0.15μm or even less?
 - > Might gain benefit to shrink the pixel size
 - Can we try to establish dedicated collaboration with foundries?
 - > May get dedicated process that is optimized for CPS (even rad-hard?)
 - > Possible to know more "secret" of the process- esp. important for sensor design
 - Might have free offers of tapeout
 - **Q: do we know any proof of the rad-hardness of a new process?**
 - > When design initiates, it is very unlikely to change the process

Consideration of the CEPC MOST-2 sensor

- Pixel chip=pixel array($\sqrt{?}$) + periphery
- Carefully think about the overall chip functionality, especially the consideration for a real prototype
- How the chip works?
 - How the pixel level data are processed?
 - Zero-suppression? On-chip FIFO?
 - > Not clear, need to be decided
 - How the chip is readout?
 - ➤ A BESIII-ladder like readout?
 - Signals of multiple chips all routed on PCB to the edge
 - Quite a experience learned from BESIII
 - Daisy-chain readout?
 - Based on high speed serial link; less reliable
 - Or even design a dedicated "Module Controller Chip (MCC)" like ATLAS?
 - My comments: less likely due to the limited time
 - My comments: a BESIII-like readout may still be the most possible solution

Consideration of the CEPC MOST-2 sensor

- How we divide the design tasks among collaborators?
 - We will design a real prototype in very limited time, so better deliver the tasks to the collaborators with experiences on that part

Less R&D, more engineering

- Chip overall design and simulation
- Pixel array better based on MOST-1
 - ➤ Sensor re-simulation
 - > Pixel optimization
 - Column readout
- Periphery Digital Pre-processing- new but somewhat independent
 - Functionality TBD
- Common blocks in periphery rad-hard!
 - > Pixel array configuration ($\sqrt{}$)
 - > PLL (existed experience)
 - > LDO (???any report in Chinese HEP society?)
 - > Bandgap+Bias DAC ($\sqrt{}$)
 - > Serializer + Tx/Rx ($\sqrt{}$)
 - > Other common blocks: JTAG, decoder

General schedule of the chip development

- Scheduled in 3.5y till final tapeout My worries:
 - 2~3 MPW tapeouts, 1~2 full mask tapeout expected
- -0.5~0y
 - Can we decide the process?
- 0~0.5y
 - Specifications determined
 - > Pixel size, readout speed, power
 - Key interface of the chip decided
 - Sync or async readout, HV, Tx/Rx to PCB...
 - Design tasks devided and delivered
- 0.5~1.3y: 1st MPW tapeout
 - Full func. digital pixel in medium pixel array
 - Basic periphery blocks integrated
 - New blocks tapeout and evacuated separately

- 1.3~1.9y: 2nd MPW tapeout
 - Test of the 1^{st} chip (3month)
 - Full funcationalily chip in medium pixel array
- 1.9~2.5y:
 - Test of the 2nd chip (2month)
 - $\ \ Modified \ 3^{rd} \ MPW \ or \ 1^{st} \ full \ mask$
- 2.5~3.1y:
 - Test of chip (3m for MPW/6m for full mask)
 - DAQ debug and ladder debug
- 3.1~3.5y:
 - Final tapeout

- My worries:
 - We really need more system level electronic designers
 - > No man power for the chip test (from the name list)
 - The test setup has to be designed before hand and ready in time
 - Heavy job in chip test
 - Not easy from chip to DAQ, also need experiences on mechanical design
 - Time is really short, both for chip design and ladder design
 - Parallel tasks in the project schedule is great, but might be to optimistic: ladder design usually waits for the final chip
 - > Also very challenging for the chip handling when thinned to 50 μ m
- Very limited considerations were proposed
 - Let's discuss