The CPS technology study for the inner chamber upgrade of BESIII MDC

Mingyi Dong dongmy@ihep.ac.cn On behalf of the working group

Outline

- Introduction of the CPS prototype for inner MDC upgrade
- Probe test of Mimosa28 chips
- Ladder design and assembly
- Readout electronics and DAQ
- Ladder test by radiation source
- Summary and outlook

The **BESIII** experiment

• The BESIII experiment

- general purpose detector at BEPCII, $E_{cm} \approx 2-4.6$ GeV, $L_{peak} \approx 10^{33}/cm^2/s$
- versatile researches in τ-charm physics

• Main drift chamber (MDC)

- Key tracking detector for momentum and dE/dx measurements of the charged particles
- Composed of an inner chamber (8 layers) and an outer chamber (35 layer), working in 1T field
- $\sigma_{xy} = 120 \mu m, \sigma_p = 0.5\% @ 1 GeV, dE/dx = 6\%$

• Aging problems of inner chamber

- High background encountered, reducing HV of the innermost 4 layers, gain decreased to 31% of normal one for the first layer cell
- Cathode aging: Malter discharge
- Anode aging: resulting in the cell gains dropped dramatically (39% for the first layer cells)
- Performance deteriorated (the worst case) : $\sigma_{xy} \approx 300 \mu m$, $\epsilon_{cell} \approx 70\%$

Main features of CMOS pixel sensor

- CMOS Pixel Sensors (CPS), one kind of monolithic active pixel sensor
- First developed by IPHC at Strasbourg , France in 1999
- Mimosa28: used in STAR-PXL, derived from Mimosa26,

- Monolithic, senser+readout electronics
 - p-type Si
 - Signal created in low doped thin epitaxial layer
 - ~ 80 e⁻ /μm, total signal ~ O(1000 e-)
- Charge collection
 - Limited depleted region
 - By thermal diffusion
 - Charge sharing \rightarrow resolution
- Flexible running conditions
 - From 0°C up to 30-40 °C if necessary
- Industrial mass production
 - Advantages on costs, yields, fast evolution of the technology, Possible frequent submissions

Inner MDC upgrade with CPS

- Baseline design
 - 3 layers of single sided CPS
 - Similar ladder structure as STAR or ALICE
 - Air cooling
- R&D project
 - institutions: IHEP+ SDU collaboration with IPHC

- density: ~20µm pixel pitch, ~0.9Mpixels/chip
- Spatial resolution: a few μm
- Rating capability: ~10⁶Hz/cm²
- Material budget: ~50µm thick
- Radiation tolerance: ~1 MRad, 10¹³ n_{eq}/cm²
- Power consumption: 175mW/cm²
- Room temperature operation

Simulation of Inner tracker with CPS

- Simulation to estimate the performance ۲ of the whole tracker with CPS inner tracker
- Improvement of the spatial resolution
 - σ_{xy} : 0.18mm \rightarrow 0.10mm @ 1GeV/c σ_z : 1.6mm \rightarrow 0.12mm @ 1GeV/c
- Improvement of the momentum resolution
- Improvement of the tracking efficiency

R&D target: a CPS prototype

- Prototype layout
 - 1/10 Coverage of the inner tracker (~ 720cm²→180 chips→180M pixels)
 - φ direction: 2 , 3 and 4 ladders for the 1st, 2nd and 3rd layer respectively
 - Z direction: 2 sets of ladders each layer
 - 10 Mimosa28 chips with dimension of 2cm imes 2cm in each ladder
- chip \rightarrow ladder \rightarrow sector \rightarrow layer \rightarrow prototype

Ladder design

- Ladder: the basic building block of the detector
 - 10 Mimosa28 chips (thinned to 50μm)
 - A flex cable
 - A carbon fiber supporter

Ladder assembly procedure

Chip probe test

 A probe testing system was set up for the chip functional verification and preliminary performance test

Probe test content

Test	Description
1_contact_test.bat	Check pin-pad touched and JTAG
2_test.bat	Test the power consumption
3_pattern.bat	Check the number of header and trailer
4_pattern2.bat	Compare the output data with the reference data in normal mode
5_vclp_scan.bat	pixel clamp voltage scan
6_threshold.bat	Threshold scan

Test	Preliminary Judgment for Bad Chips
1	JTAG is wrong
2	Reset:i_vdda>100 or i_vddd>25; Start:i_vdda>1500 or i_vddd>1000
3	Headers or Trailers < 200
4	data do not match
5	DAC Range out of (75, 100)
6	Bad pixels > 80%

Probe Test Conclusion

- 6 wafer chips were delivered, 4 wafer chips were tested
- Typical yield is about 65%

Ladder assembly

 Ladder assembly was operated at a special platform to ensure the location accuracy of the chips

Ladder assembly

Material budget

layer	material	Thickness (μm)	Density (g /cm³)	X ₀ (cm)	% of X ₀
	Si	50	2.33	9.36	0.053
sensor	Acrylic adhesive	50	1.2	34.5	0.014
	Cu	17.8×0.67	8.96	1.43	0.083
	Adhesive	28	1.2	34.5	0.008
cable	Kapton	100	1.42	28.6	0.035
	Adhesive	28	1.2	34.5	0.008
	Cu	17.8×0.23	8.96	1.43	0.029
haalaar	Acrylic adhesive	50	1.2	34.5	0.014
backer	Carbon fiber	350	1.72	28	0.125
Support	Acrylic adhesive	50	1.2	34.5	0.014
beam	Carbon fiber	350	1.72	28	0.125
	0.369				
total all					0.508

- Ladder: about 0.37% X₀
- Detector prototype: 0.51% X₀/layer (ladder + CF supporter)

Location of the chips on the ladder

- The distance between the left mark on the chip and its corresponding mark on the PCB was tested by a imaging machine
- The location precision is better than $10 \mu m$ or even better after the assembly process optimization

Wire bonding

- 102wires/chip
- Bonded with 25µm aluminum wire
- Tooling for fixing ladder

Schematic of the readout electronics

- Distributed system
- Ladder \rightarrow FCB \rightarrow Readout Board \rightarrow Switching \rightarrow PC
- SiTCP : implementation of a hardware TCP/IP on Xilinx FPGA device, high-speed and highly reliable data transmission

DAQ

- Data transmission based on SiTCP
- Meet the requirement of maximum of the ladder readout speed: 30~40MB/s
- Developed by Qt software (linux), including 7 functional modules

		Readout board (TCP/IP)			
		data	gure		
Qt p	Control	Data interface program	data	Online histogram	
		data data			
	Data saving	Event reconstruction and package		Data base for log files	
«	MainWindow				
	Main RO_MODE Reg Lir	ne Page			
	bias_gen i_dis_clp	64	suze_seq	pwron	fffff
	bias_gen i_dis_clp i_pwrs_bias	64	suze_seq	pwron latch	fffffi 600C
	bias_gen i_dis_clp i_pwrs_bias i_bufbias	64 a 13	suze_seq	pwron latch rd	fffffi 6000 1c
	bias_gen i_dis_clp i_pwrs_bias i_bufbias i_disc_pwrs1	64 a 13 a	suze_seq	pwron latch rd calib	6000 1c 3000
	bias_gen i_dis_clp i_pwrs_bias i_bufbias i_disc_pwrs1 i_disc_pwrs2 i_iyds_tx	64 a a 28	suze_seq	pwron latch rd calib clp sel row int	ffffff 6000 1c 3000 1c0
	bias_gen i_dis_clp i_pwrs_bias i_bufbias i_disc_pwrs1 i_disc_pwrs2 i_ivds_tx i_ivds_tx i_ivds_rx	64 a a 28 20	suze_seq	pwron latch rd calib clp sel_row_int rstframe	ffffffi 600C 1c 300C 1c0 fffff 200C
	bias_gen i_dis_clp i_pwrs_bias i_bufbias i_disc_pwrs1 i_disc_pwrs2 i_ivds_tx i_ivds_rx v_tst1	64 a a 28 20 80	suze_seq	pwron latch rd calib clp sel_row_int rstframe rstpix	Ffffffi 6000 1c 3000 1c0 Fffff 2000 555
	bias_gen i_dis_clp i_pwrs_bias i_bufbias i_disc_pwrs1 i_disc_pwrs2 i_ivds_tx i_ivds_rx v_tst1 v_tst2	64 a 13 a a 28 20 80 64	suze_seq	pwron latch rd calib clp sel_row_int rstframe rstpix rstline	ifffffi 600C 1c 300C 1c0 ffff 200C 555 600C

×	🕒 🗉 MainWindow				
	Main RO_MODE Reg Line	Page			
	Load Configuration			load	save
	RO_MODE0_en_v-dis_digtst	0	RO_MODE3	en_anamux_sel_0	0
	en_sel8out	0	_	en_anamux_sel_1	0
	dis_lvds	0		en_anamux	0
	en_line_marker	0	-	en_rd_delay	1
	en_mode_speak	1		dis_vclppix	0
	en_patt_only	0		en_cfg_cmdgen	1
	en_exstart	1	_	clkrateout	1
	en_start_jtag	0		dual_channelout	1
	RO_MODE1 en_startframe	0	RO_MODE4	not used	0
	en ana tst	0	-	dis pstart	0

Ladder test

- The ladders together with the readout electronics were test by ^{55}Fe X rays and ^{90}Sr β rays
- The threshold scan, the crosstalk, the imaging performance, and the hit reconstruction algorithm were studied.

S-curve scan

- S-curve scan by column and by pixel
- PFN~1mV, TN, ENC~ 15-20e, Threshold ~(3-4) σ

Test by radiation sources

- Pixel response test by ⁵⁵Fe X rays and ⁹⁰Sr β rays
- Crosstalk between two neighboring chips test
- Impact of the chip temperature on the noise level

Crosstalk between two neighboring chips test

Hit reconstruction algorithm

- Charge collection by thermal diffusion
- Charges induced by one hit can be sharing with several pixels, be benefit to special resolution
- Digital readout: no seed signal
- Reconstruction algorithm : comparison method

Summary and Outlook

- The study of a CPS prototype
- Development of the ladder, electronics, DAQ, and software
- Preliminary test by radiation source, beam test will be carried out next year
- The research focus on the key technology and method of the pixel detector, not only for the BESIII inner tracker upgrade, but also for the pre-research of the CEPC vertex detector
- Double-sided ladder was considered and designed preliminary, supported by funding of key lab of nuclear detection and electronics
- Some issues for MOST2: trigger, cooling.....

Thanks for your attention !