



中國科學院為維物服研究所 Institute of High Energy Physics Chinese Academy of Sciences

# Status of readout electronic design in MOST1

Na WANG, Ke WANG, Zhenan LIU, Jia TAO

On behalf of the Trigger Group (IHEP)

Mini-workshop for CEPC MOST silicon project,23 November,2017,Beijing

### Outline

- Introduction on readout electronics in MOST1
- R&D activities
  - -Data acquisition with oscilloscope
  - -Data acquisition with ADC
- Summary and future plan

### **R&D** activities

- Two versions of daughter-board designed and fabricated
- Two versions of mother-board (1<sup>st</sup> designed and fabricated ,2<sup>nd</sup> in process )
- Single analog readout channel verified with oscilloscope and ADC sampling
- FPGA Firmware Design
- Digital controlling (IP is under packaged)

### Introduction on the readout electronics

- Measurements of the prototype pixel devices
- To validate their usefulness for future application
- 1st CPS Prototype Characterization
  - ✓ Verification of basic electrical parameters estimation of the collected charge
    Noise, signal dynamic range response of the device to the light pulses
  - ✓ Tests using <sup>55</sup>Fe radioactive source

Daughter Board → Mother Board → FPGA board

Mother Board ADC sampling.

16-bit ADC resolution



## Two versions of daughter and mother board



Daughter board:1<sup>st</sup> to 2<sup>nd</sup> fabricated and tested



Daughter
→ Mother board design.

Mother board: 1<sup>st</sup>, fabricated and tested 2<sup>nd</sup> under designed



#### Interface to mother board:

- power supplies ,read-out clock
- address and other controlling signal
- read-back synchronization signal
- 16 pairs of differential analog and digital output

#### Interface to NI chassis:

- 16 analog output
- clocks and synchronization signals

# Signal dynamic range

- Single input ,differential output
- Low noise amplification of the signal (multiplied by 3 ~10)
- Dynamic range(e.g. 50mV Vpp→500mV Vpp)





# Data acquisition with oscilloscope

### Data acquisition with oscilloscope







- Sensitive to visible light data acquisition :
- Oscilloscope data acquisition and storage 2 frame/pic, 2M clock
- 5000 point data

#### Data processing:

- Remove oscilloscope background noise
- Pixel output noise:
  - 1.6mV

simulation pixel charge gain 20uV/e,

equivalent noise charge, ENC-- 80e –

 48 rows noise and background distribution Data acquisition with oscilloscope



• 55Fe Radioactive Source:

5.9 keV X-ray source Observed signals :

2M clock,2 frames/pic

 Multi event trigger mode selection,10G raw data for processing



# Data acquisition with ADC sampling

# Digital controlling--FPGA firmware design

Digital controlling Block diagram based on Xilinx KC705

- CEPC CPS control:
  - -clock selection:2M,4M
  - -address set :A0:A7
- ADC control
  - clock
  - -enable
- ADC data read out
  - -readout clock



- Data pre-processing
  - --Serial parallel conversion storage in local memory (in progress)

# Digital controlling—ADC verification

### **ADC Characterization verifying**

- --ILA captured data 1.5VDC SDO is the same as the oscilloscope's waveform
- --ILA captured data 250KHz 4Vpp 2VDC offset Sine wave (signed decimal)



# Data acquisition ADC sampling

VIVADO ILA captured data (displayed in analog style)



# Summary and future plan

### Accomplished:

 Read-out system for MOST-1, single channel data apquisition and transmission

basic characteristic-signal dynamic range

-noise performance

-the digital controlling for chip and FPGA

--single channel data CDS (48rows in one selected column)

### Future plan:

 Read-out system:16 channel\*16bit \*clock data convention and transmission, storage in local memory

# CEPC CPS1 prototype chip testing plan

- 1.Tests under Infrared Laser -- Time of Charge Collection
  - (time properties of charge collection, undepleted epitaxial layer)
    - -- spatial resolution and detection efficiency
- 2. Tests with Soft X-rays (55 Fe source) -- Temporal noise and spatial non-uniformities in pixel responses

  - -- Charge Collection Efficiency and Cluster Signal Distribution
  - -- Soft X-ray spectroscopy
  - -- Charge Distribution

### 3. Radiation testing:

TID anti-radiation testing Single event effect Displacement effect testing (Neutron irradiation)





Thank you!