Charm physics at BESIII

报告人:马海龙(中科院高能所)

实验物理中心讲座 EPD seminar

November 29th 2017

Introduction

Leptonic and hadronic decays of charmed hadrons (D⁰, D⁺, D_s⁺ and Λ_c^+) provide ideal test-beds to explore weak and strong effects

> D leptonic decays

 $f_{D(s)+}, f^{K(\pi)}_{+}(0)$: better calibrate LQCD $|V_{cs(d)}|$: better test on CKM matrix unitarity Search for lepton flavor violation

> D hadronic decays

 $D^0\overline{D}^0$ mixing parameters and CPV Strong phase difference in D^0 decays: Constrain γ/ϕ_3 measurement in B decays

> Absolute BFs of Λ_c^+ decays

No absolute BF measurements of $\Lambda_c{}^+$ using near threshold data before BESIII

$$U = \begin{bmatrix} V_{ud} \ V_{us} \ V_{ub} \\ V_{cd} \ V_{cs} \ V_{cb} \\ V_{td} \ V_{ts} \ V_{tb} \end{bmatrix}$$

Contents

Charm samples at BESIII

(Semi-)leptonic D_(s) decays

Hadronic D_(s) decays

• Λ_c^+ decays

Summary

Recent $D^{0(+)}$, D_s^+ and Λ_c^+ samples

Taking from Longke Li's talk at joint workshop of BESIII/Belle/LHCb at Nankai

Experiment	Machine	C.M	Lumin.	N (<i>D</i>)	efficiency	advantage/disadvantage
CLEO	CESR (e^+e^-)	3.77 GeV	0.8 fb ⁻¹	$2.9 imes 10^{6}\ 2.3 imes 10^{6} (D^{\pm})$		 extremely clean enviroment pure D-beam, almost no bkg
		4.17 GeV	$0.6 \ {\rm fb}^{-1}$	$0.6 imes10^6$	~10-30%	© quantum coherence
ΔζζΠ	$\frac{BEPC-II}{(e^+e^-)}$	3.77 GeV	2.92 fb^{-1}	$\begin{array}{c} 10.5\times 10^{6} \\ 8.4\times 10^{6} \\ \text{D}^{0(+)} \end{array}$	10-3078	Ino CM boost, no T-dep analyses
рсэш		4.18 GeV	3 fb ⁻¹ D _s +	3 imes 10~		
		4.6 GeV	0.567 fb ⁻¹ A _c +	*	***	
\mathcal{B}	${\sf KEKB}\ (e^+e^-)$	10.58 GeV	1 ab ⁻¹	1.3×10^9		 clear event environment high trigger efficiency
BELLE					~5-10%	high-efficiency detection of neutrals
	PEP-II (e^+e^-)	10.58 GeV	$0.5 \ ab^{-1}$	6.5×10^{8}	0.10/0	Imany high-statistics control samples Image time-dependent analysis
	、 ,			**	**	© smaller cross-section than pp colliders
	Tevatron (<i>p</i> p̄)	1.96 TeV	9.6 fb ⁻¹	1.3×10^{11}		© large production cross-section
		2 7 1/	100-1		<0.5%	© large boost: excellent time resolution
LHCD	(<i>pp</i>)	7 TeV 8 TeV	1.0 fb^{-1} 2.0 fb ⁻¹	5.0×10^{12}		cedicated trigger required e hard to do neutrals and neutrinos
7				***	*	

BEPCII: high luminosity double-ring collider

Satellite view of BEPCII /BESIII

South R

BESIII detector Beam energy: Designed luminosity: Optimum energy: Achieved luminosity: Data taken from:

LINAC

1.0-2.3 GeV 1.00×10³³ cm⁻²s⁻¹ 1.89 GeV 1.00×10³³ cm⁻²s⁻¹ 2009

BESIII detector

$D^{0(+)}$, D_s^+ and Λ_c^+ samples (pb⁻¹) at BESIII

> D⁰⁽⁺⁾ samples at ψ(3770)

$$N_{\rm ST}^i = 2 \times N_{\rm D\overline{D}} \times B_{\rm ST}^i \times \varepsilon_{\rm ST}^i$$

$> D_s^+/D_s^+/\Lambda_c^+$ samples

$$N_{\rm DT}^{i} = 2 \times N_{\rm D\overline{D}} \times B_{\rm ST}^{i} \times B_{\rm sig} \times \mathcal{E}_{\rm ST \, vs. sig}^{i}$$
$$B_{\rm sig} = \frac{N_{\rm DT}^{\rm tot}}{N_{\rm ST}^{\rm tot} \times \overline{\mathcal{E}}_{\rm sig}}$$

$$\overline{\mathcal{E}}_{\text{sig}} = \sum_{i=1}^{N} (N_{\text{ST}}^{i} \times \mathcal{E}_{\text{ST vs.sig}}^{i} / \mathcal{E}_{\text{ST}}^{i}) / \sum_{i=1}^{N} N_{\text{ST}}^{i}$$
7

(Semi)leptonic D_(s) decays

≻ I+v

≻ PI+v

≻ VI+v

≻ SI+v

Rare SL decays

(Semi-)leptonic D decays

粲介子(半)轻子衰变是测定CKM矩阵元|V_{cs(d)}|的理想桥梁

 $\Gamma(D_{(s)}^{+} \to \ell^{+} \nu_{\ell}) = \frac{G_{F}^{2} f_{D_{(s)}^{+}}^{2}}{8\pi} |V_{cd(s)}|^{2} m_{\ell}^{2} m_{D_{(s)}^{+}} \left(1 - \frac{m_{\ell}^{2}}{m_{D_{(s)}^{+}}^{2}}\right)^{2} \qquad \frac{d\Gamma}{dq^{2}} = X \frac{G_{F}^{2} |V_{cd(s)}|^{2}}{24\pi^{3}} p^{3} |f_{+}(q^{2})|^{2}$

■ 改进的f_{D(s)+}, f₊^{D→K(π)}(q²)能够在更高精度上检验格点QCD 的计算

■格点QCD计算精度的改善为精密测量|V_{cs(d)}|创造了条件

Searches for $D_{(s)}^+ \rightarrow l^+v$ at BESI/II

22.3 pb⁻¹ at 4.03 GeV

22.3 pb⁻¹ at 4.03 GeV

33 pb⁻¹ around ψ(3770)

PRL74(1995)4599

PLB429(1998)188

PLB610(2005)183

Newest results on B[D⁺ \rightarrow µ⁺v], f_{D+}|V_{cd}|

818 pb⁻¹ at ψ(3770) (2004–2008)

2.93 fb⁻¹ data@ 3.773 GeV

PRD78(2008)052003

PRD89(2014)051104R

f_{D+}=205.8±7.5±2.5 MeV

 $B_{D+ \rightarrow \mu+\nu} = (3.71 \pm 0.19 \pm 0.06) \times 10^{-4}$ $f_{D+} = (203.2 \pm 5.3 \pm 1.8) \text{ MeV}$

 $|V_{cd}|=0.2210\pm0.0058\pm0.0047$

	1		
CLEO-c PRD78(2008)052003	209.0±9.3±2.6	-	
BESIII (2.9 fb ⁻¹) PRD89(2014)051104(R)	203.2±5.3±1.8		
HPQCD PRD86(2012)054510	208.3±3.4	-	
Fermilab Lattice + MILC PRD90(2014)074509	212.6±0.4 ^{+1.0}		
160 170 1	80 190 f _{D⁺} (MeV)	200 21	0

20 fb⁻¹ 数据能够将f_{D+} 统计误差降至1%

Evidence of $D^+ \rightarrow \tau^+ v$ (4 σ)

Fitting to DATA

$B[D^+ \rightarrow \tau^+ \nu] = (1.20 \pm 0.24_{stat.}) \times 10^{-3}$

$$R \equiv \frac{\Gamma(D^+ \to \tau^+ \nu)}{\Gamma(D^+ \to \mu^+ \nu)} = \frac{m_{\tau^+}^2 \left(1 - \frac{m_{\tau^+}^2}{M_{D^+}^2}\right)^2}{m_{\mu^+}^2 \left(1 - \frac{m_{\mu^+}^2}{M_{D^+}^2}\right)^2}$$

SM prediction: 2.66

BESIII: 3.21±0.64

11

Previous measurements of D_s^+ \rightarrow l^+ v

In the past 30 years, $D_s^+ \rightarrow I^+v$ has been studied by WA75, CLEOII, E653, BESI, L3, OPAL, ALPHA, CLEO-c, BELLE, Babar

Belle, 913 fb⁻¹ at
 10.58 GeV [2698 l⁺v]

 $e^+e^- \rightarrow DKXD_s^{*-}$

f_{Ds+}=255.5±4.2±5.1 MeV

Babar, 521 fb⁻¹ at 10.58 GeV [1023 l⁺v]

$$e^+e^- \rightarrow DKXD_s^{*-}$$

Results on B[D_s⁺ \rightarrow l⁺v], f_{Ds+}|V_{cs}| at BESIII

0.48 fb⁻¹ data@4.01 GeV

3.19 fb⁻¹ data@4.178 GeV

PRD94(2016)072004

BESIII f_{Ds+}精度达2%, 联合τ⁺v研究,能够降 至1.5%水平

f_{Ds+}=(241.0±16.3±6.6) MeV

 $f_{Ds}|V_{cs}|=242.5\pm3.5\pm3.7$ MeV

Previous measurements of f^{D \rightarrow K(\pi)}(0) |V_{cs}(x)|

In the past 30 years, studies of $D \rightarrow K(\pi)I^+v$ were made by MARKIII, E691, CLEO, CLEOII, BESII, FOCUS, BELLE, Babar and CLEO-c

BELLE, 282 fb⁻¹ at 10.58 GeV

Babar, 75 fb⁻¹ at 10.58 GeV

Babar, 347.2 fb⁻¹ at 10.58 GeV

Before 2010, the LQCD calculated $f_{+}^{D \rightarrow K(\pi)}(0)$ precision is at 10% level, thus limiting $|V_{cs(d)}|$ measurement 15

Much improved LQCD calculations

Taking from Aida X. El-Khadra's talk at Beauty2014

errors (in %) comparison: FLAG-2 averages vs. new results

review by C. Bouchard @ Lattice 2014

Impact of $f^{D \rightarrow K(\pi)}_+(q^2)$ on LQCD

BESIII, PRD92(2015)072012

Comparisons of $f^{D \rightarrow K(\pi)}_+(0)$ with LQCD

Improvements on |V_{cs(d)}|

方法2受f₊^{D→K(π)}(0)格点计算精度限制 [2.4(4.4)%]

Weights of |V_{cs(d)}|

BESIII |V_{cd}|权重>50%

D_s⁺→τ⁺ν研究完成后,BESIII D_s⁺→I⁺ν 对|V_{cs}|贡献的权重有望达到50%左右

leptonic D decay: $|V_{cs}|$ =1.008±0.021 (PDG2016) semileptonic D decay: $|V_{cs}|$ =0.975±0.007±0.025 (PDG2016) average of the determinations from leptonic and semileptonic: $|V_{cs}|$ =0.995±0.016 (PDG2016) W[±] decays: $|V_{cs}|$ =0.94 $^{+0.32}_{-0.25}$ ±0.13 (PDG2016)

LFU test in CS decay $D^{0(+)} \rightarrow \pi l^+ v$ at BESIII

Events /(0.007 GeV²/c⁴)

Evidence of LFV at 2.6 σ in FCNC decays B⁺ \rightarrow K⁺ μ ⁺ μ ⁻/K⁺e⁺e⁻

$$R_{LU}^{0(+)} = \frac{B(D^{0(+)} \rightarrow \pi^{-(0)} \mu^{+} \nu)}{B(D^{0(+)} \rightarrow \pi^{-(0)} e^{+} \nu)} \sim 0.97$$

BPDG16: $R_{LU}^{0} = 0.82 \pm 0.08 \ (\sim 2.0\sigma)$
 $B(D^{0} \rightarrow \pi^{-} \mu^{+} \nu) = (0.237 \pm 0.024)\%$
600
**2276 \pm 63 D^{0} $\rightarrow \pi^{-} \mu^{+} \nu$
400
2276 \pm 63 D^{0} $\rightarrow \pi^{-} \mu^{+} \nu$
600
70
**1340 \pm 42 D^{+} $\rightarrow \pi^{0} \mu^{+} \nu$
600
1340 \pm 42 D^{+} $\rightarrow \pi^{0} \mu^{+} \nu$
600
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
10****

 $(\mathbf{0})$

. .

- 0(1)

改进测定B[D⁰→ $\pi^{-}\mu^{+}v$] = (0.267 ±0.007 ±0.007)% 首次测定B[D⁺→ $\pi^{0}\mu^{+}v$] = (0.342 ±0.011 ±0.010)%

 $R_{LU}^0 = 0.918 \pm 0.036$

 $R_{LU}^+=0.921\pm0.045$

Amplitude analysis of $D^+ \rightarrow Ve^+v$

Events

150

0.5

PRD94(2016)032001

PRD92(2015)071101(RC)

D+→∞e+v

(c)

cosθ,

 $r_V = V(0)/A_1(0) = 1.24 \pm 0.09 \pm 0.06$

 $r_2 = A_2(0)/A_1(0) = 1.06 \pm 0.15 \pm 0.05$ ²²

Observation of $D \rightarrow a_0(980)^{-(0)}e^+v$

Explore the nontrivial internal structure of light hadron mesons, traditional qq states, tetra quark system.

With chiral unitarity approach in the coupled channels, BF is predicted to be order of 5(6)×10⁻⁵ for D⁰⁽⁺⁾ decays

 3.0σ

 Improve understanding of classification of light scalar mesons

$$R \equiv \frac{B(D^+ \to f_0 l^+ \nu) + B(D^+ \to \sigma l^+ \nu)}{B(D^+ \to a_0 l^+ \nu)}$$

R=1(3) if traditional qq (tetra quark) system

• $B(D^0 \to a_0(980)^- e^+ v_e) \times B(a_0(980)^- \to \eta \pi^-)$ = $(1.12^{+0.31}_{-0.28}(stat) \pm 0.10(syst)) \times 10^{-4}$ • $B(D^+ \to a_0(980)^0 e^+ v_e) \times B(a_0(980)^0 \to \eta \pi^0)$ = $(1.47^{+0.73}_{-0.59}(stat) \pm 0.14(syst)) \times 10^{-4}$

Search for rare D decays

In SM, the BFs of charm rare decay are expected to be less than 10⁻⁶

PRD 91(2015)112015 Consistent with Babar result

First searches for $D^+ \rightarrow \gamma e^+ v$ and $D^0 e^+ v$

Applying the SU(3) symmetry for the light quarks, this rare decay branching fraction can be predicted by theoretical calculation and its theoretical value is 2.78×10^{-13} [EPJC, 59:841-845(2009)].

B[**D**⁺→**D**⁰e⁺ν] <1×10⁻⁴ @90%C.L. 25

D hadronic decays

- > D⁰D
 ⁰ mixing parameters
- > Strong phase difference
- > SU(3) symmetry and break effect

$D^0\overline{D}^0$ mixing and CPV

• Open-flavor neutral meson transforms to its anti-meson and vice versa:

 $K^0 \Leftrightarrow \overline{K^0}, \ B^0_d \Leftrightarrow \overline{B^0_d}, \ B^0_s \Leftrightarrow \overline{B^0_s}, \ D^0 \Leftrightarrow \overline{D^0}$

• Flavor eigenstate $(|D^0\rangle, |\overline{D^0}\rangle) \neq \text{mass}$ eigenstate $|D_{1,2}\rangle$ with $M_{1,2}$ and $\Gamma_{1,2}\rangle$

 $|D_{1,2}\rangle \equiv p|D^0\rangle \pm q|\overline{D^0}\rangle$ (CPT: p²+q²=1)

• Mixing parameters definition:

$$\mathbf{x} \equiv \frac{M_1 - M_2}{\Gamma}, \quad \mathbf{y} \equiv \frac{\Gamma_1 - \Gamma_2}{2\Gamma}, \quad \Gamma \equiv \frac{\Gamma_1 + \Gamma_2}{2}$$

- under phase convention $CP|D^{0}\rangle = |\overline{D^{0}}\rangle, \ CP|\overline{D^{0}}\rangle = |D^{0}\rangle,$
- with CP conservation $(q = p = 1/\sqrt{2})$: $|D_{1,2}\rangle = |D_{+,-}\rangle$ (CP eigenstates)

- Unique: only the up-type meson for mixing
- Standard Model predicts: $\sim \mathcal{O}(1\%)$

(1) short distance (<0.1% by CKM and GIM)

(2) long distance ($\sim 1\%$)

- Precise measurement of x, y: effectively limit New Physics(NP) modes;
- search for NP, eg: $|x| \gg |y|$

D⁰**D**⁰ mixing and CPV

Decay Mode	Observables	Relationship	
		$2y_{CP} = \left(q/p + p/q \right)y\cos\phi -$	
$D^0 \rightarrow K^+ K^- / \pi^+ \pi^-$	y_{CP}	$\left(\left q/p\right - \left p/q\right \right)x\sin\phi$	
$D \rightarrow K + K / \pi + \pi$	A_{Γ}	$2A_{\Gamma} = \left(q/p - p/q \right) y \cos \phi -$	
		$\left(\left q/p\right + \left p/q\right \right)x\sin\phi$	
	x		
$D^0 \rightarrow K^0 \pi^+ \pi^-$	y		
$D \rightarrow H_S \pi^{-} \pi$	q/p		
	ϕ		
$D^0 \! ightarrow \! K^+ \ell^- \nu$	R_M	$R_M = (x^2 + y^2)/2$	
$D^0 \! ightarrow \! K^+ \pi^- \pi^0$	<i>x''</i>	$x'' = x \cos \delta_{K\pi\pi} + y \sin \delta_{K\pi\pi}$	
(Dalitz plot analysis)	y''	$y'' = y \cos \delta_{K\pi\pi} - x \sin \delta_{K\pi\pi}$	
"Double-tagged"	R_M		
branching fractions	y	$R_{11} = (x^2 \pm y^2)/2$	
measured in	R_D	$n_M = (x + y)/2$	
$\psi(3770) \rightarrow DD$ decays	$\sqrt{R_D}\cos\delta$		
		$x' = x\cos\delta + y\sin\delta$	混合参数·v v
		$y' = y\cos\delta - x\sin\delta$	111 Ц 2 ж.л.у
	$x^{\prime 2}, y^{\prime}$	$A_M \equiv (q/p ^4 - 1)/(q/p ^4 + 1)$	
$D^0 \rightarrow K^+ \pi^-$	x'^{2+}, x'^{2-}	$x'^{\pm} = [(1 \pm A_M)/(1 \mp A_M)]^{1/4} \times$	间接CPV参数: q/p ,ø
	y'^+, y'^-	$(x'\cos\phi \pm y'\sin\phi)$	
		$y'^{\pm} = [(1 \pm A_M)/(1 \mp A_M)]^{1/4} \times$	直接CPV参数:AnAv.A
		$(y'\cos\phi \mp x'\sin\phi)$	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$
	$\frac{\Gamma(D^0 \to K^+\pi^-) + \Gamma(D^0 \to K^-\pi^+)}{\Gamma(D^0 \to K^-\pi^+) + \Gamma(D^0 \to K^+\pi^-)}$	R_D	D
$D^0 \rightarrow K^+ \pi^- / K^- \pi^+$	$\mathbf{I}\left(D \to \mathbf{K}^{-} \pi^{+}\right) + \mathbf{I}\left(D^{-} \to \mathbf{K}^{+} \pi^{-}\right)$		κ _D
(time-integrated)	$\Gamma(D^0 \to K^+ \pi^-) - \Gamma(\overline{D}{}^0 \to K^- \pi^+)$		
	$\Gamma(D^0 \to K^+\pi^-) + \Gamma(\overline{D}{}^0 \to K^-\pi^+)$	A _D	强相差参数:δ _{Kπ} ,δ _{Kπ0}
	$\frac{\Gamma(D^0 \to K^+ K^-) - \Gamma(\overline{D}^0 \to K^+ K^-)}{\Gamma(\overline{D}^0 \to K^+ K^-)}$	$A_K + \frac{\langle t \rangle}{\tau_D} \mathcal{A}_{CP}^{\text{indirect}} (\mathcal{A}_{CP}^{\text{indirect}} \approx -A_{\Gamma})$	
$D^0 \rightarrow K^+ K^- / \pi^+ \pi^-$	$\Gamma(D^0 \to K^+ K^-) + \Gamma(D^0 \to K^+ K^-)$		
(time-integrated)	$\Gamma(D^0 \rightarrow \pi^+ \pi^-) = \Gamma(\overline{D}{}^0 \rightarrow \pi^+ \pi^-)$		
	$\frac{\Gamma(D \to \pi^+\pi^-) - \Gamma(D \to \pi^+\pi^-)}{\Gamma(D^0 \to \pi^+\pi^-) + \Gamma(\overline{D}^0 \to \pi^+\pi^-)}$	$A_{\pi} + \frac{\langle t \rangle}{\tau_{\Gamma}} \mathcal{A}_{CP}^{\text{indirect}} (\mathcal{A}_{CP}^{\text{indirect}} \approx -A_{\Gamma})$	28

Evidence of D⁰D⁰ mixing

Babar, 384 fb⁻¹@10.58 GeV

PRL98(2007)211802

$$\frac{T_{\rm WS}(t)}{e^{-\Gamma t}} \propto R_D + \sqrt{R_D} y' \Gamma t + \frac{x'^2 + y'^2}{4} (\Gamma t)^2$$

 $\begin{array}{l} R_D = (0.303 \pm 0.016(\text{stat}) \pm 0.010(\text{syst}))\% \\ x'^2 = (-0.22 \pm 0.30(\text{stat}) \pm 0.21(\text{syst})) \times 10^{-3} \\ y' = (9.7 \pm 4.4(\text{stat}) \pm 3.1(\text{syst})) \times 10^{-3} \\ (x'^2, y') \text{ with correlation } -0.95 \end{array}$

BELLE, 540 fb⁻¹@10.58 GeV

PRL98(2007)211803

 $A_{\Gamma} = [0.01 \pm 0.30(\text{stat}) \pm 0.15(\text{syst})]\%.$ $y_{CP} = [1.31 \pm 0.32(\text{stat}) \pm 0.25(\text{syst})]\%.$

Observation of D⁰D⁰ mixing

$D^0 \overline{D}^0$ mixing parameter y_{CP}

BESIII, 3 fb⁻¹ at 3.773 GeV

PLB744(2015)339

For D decay to CP eigenstates:

 $\begin{aligned} R_{CP^{\pm}} \propto |A_{CP^{\pm}}|^2 (1 \mp y_{CP}) \\ y_{CP} &= \frac{1}{2} [y \cos \phi (|\frac{q}{p}| + |\frac{p}{q}|) - x \sin \phi (|\frac{q}{p}| - |\frac{p}{q}|)] \end{aligned}$

For CP tagged semileptonic D decays:

$$R_{l,CP^{\pm}} \propto |A_l|^2 |A_{CP^{\pm}}|^2$$
$$y_{CP} \approx \frac{1}{4} \left(\frac{R_{l;CP+}R_{CP-}}{R_{l;CP-}R_{CP+}} - \frac{R_{l;CP-}R_{CP+}}{R_{l;CP+}R_{CP-}} \right)$$

Type	Modes
CP^+	$K^+K^-, \pi^+\pi^-, K_S\pi^0\pi^0$
CP^-	$K^0_S\pi^0,K^0_S\omega,K^0_S\eta$
l^{\pm}	$Ke u, K\mu u$

cu.

 $y_{CP} = (-2.0 \pm 1.3 \pm 0.7)\%$

Strong phase difference $\delta_{K\pi}$

$$\mathcal{A}_{CP \to K\pi} = \frac{\mathcal{B}_{D_2 \to K^-\pi^+} - \mathcal{B}_{D_1 \to K^-\pi^+}}{\mathcal{B}_{D_2 \to K^-\pi^+} + \mathcal{B}_{D_1 \to K^-\pi^+}}.$$

$$2r \cos \delta_{K\pi} + y = (1 + R_{\rm WS}) \cdot \mathcal{A}_{CP \to K\pi},$$

$$|D_1\rangle \equiv \frac{|D^0\rangle + |\overline{D}^0\rangle}{\sqrt{2}} \quad |D_2\rangle \equiv \frac{|D^0\rangle - |\overline{D}^0\rangle}{\sqrt{2}}.$$

Type	Mode
Flavored	$K^-\pi^+, K^+\pi^-$
CP+	$K^+K^-, \pi^+\pi^-, K^0_S\pi^0\pi^0, \pi^0\pi^0, \rho^0\pi^0$
CP-	$K^0_S\pi^0, K^{ar 0}_S\eta, K^0_S\omega$

 $\delta_{\text{K}\pi}$ is related to mixing parameters x and y from x' and y'

目前最精确结果

 $A^{K\pi}_{CP} = (12.7 \pm 1.3 \pm 0.7) \times 10^{-2}$

 $\cos \delta_{K\pi} = 1.02 \pm 0.11 \pm 0.06 \pm 0.01$

PLB734(2014)227

$D^0 \overline{D}^0$ mixing and CPV

 $D^0\overline{D}^0$ mixing is observed, no direct CPV is found

Strong phase: bridge to constrain γ/ϕ_3

• Quantum correlated $D^0\overline{D}^0$ decays in $\psi(3770)$:

> CP asymmetry in mixing and decays

> Interference \rightarrow strong phase parameters \rightarrow Constrain γ/ϕ_3 , which is important for CKM UT

 γ is the worst measured angle, mostly due to systematic error
 Significant deviation from UT will imply NP beyond SM

Strong phase difference $\delta_{KS\pi+\pi-}$

Constrain γ/ϕ_3 measurement

taken from Liming Zhang's talk at FPCPV2016

- Current one syst. ~2° from CLEO strong phase measurements
- 15-20 fb⁻¹ ψ(3370) data from BESIII are desired to avoid syst. limitation for upgrade scenario

More 15 fb⁻¹ ψ (3770) data@BESIII will avoid syst. limitation for γ/ϕ_3 measurement 36

SU(3) symmetries and breaking effect

- Ratio of branching fractions of D to KK and pi pi $R = \frac{Br(D^0 \to K^+ K^-)}{Br(D^0 \to \pi^+ \pi^-)} \approx 2.8$
 - R=1 in the SU(3) flavour symmetry limit
- Branching fraction of $\mathcal{B}(D^0 \to K^0 \overline{K}^0) = (0.320 \pm 0.038) \times 10^{-3}$ vanishes in the SU(3) limit
- DDbar mixing parameters

 $x, y \sim \sin^2 \theta_C \times [SU(3) \text{ breaking}]^2$

 Non-zero mixing parameters indicate large SU(3) breaking effect

Theoretical calculations

Modes	Amplitudes	Br(FSI)	Br(diagrammatic)	Br(pole)	Br(FAT)	Br(FAT[mix])	Br(exp)
$D^0 \rightarrow \pi^+ \rho^-$	$T_V, (E_P)$	6.5	3.92 ± 0.46	3.5 ± 0.6	4.74	4.66	4.96 ± 0.24
$D^0 ightarrow \pi^0 ho^0$	$C_P, C_V, (E_P, E_V)$	1.7	2.96 ± 0.98	1.4 ± 0.6	3.55	3.83	3.72 ± 0.22
$D^{ m o} o \pi^{ m o} \omega$	$C_P, C_V, (E_P, E_V)$	0.08	0.10 ± 0.18	0.08 ± 0.02	0.85	0.18	< 0.26
$D^0 o \pi^0 \phi$	C_P	1.1	1.22 ± 0.08	1.0 ± 0.3	1.11	1.11	1.31 ± 0.10
$D^0 ightarrow \pi^- ho^+$	$T_P,(E_V)$	8.2	8.34 ± 1.69	10.2 ± 1.5	10.2	10.0	9.8 ± 0.4
$D^0 \to K^+ K^{*-}$	$T_V,(E_P)$	2.8	1.99 ± 0.24	1.6 ± 0.3	1.72	1.73	1.56 ± 0.12
$D^0 \to K^0 \overline{K}^{*0}$	E_P, E_V	0.99	0.29 ± 0.22	0.16 ± 0.05	1.1	1.1	< 1
$D^0 o \overline{K}^0 K^{*0}$	E_P, E_V	0.99	0.29 ± 0.22	0.16 ± 0.05	1.1	1.1	< 0.56
$D^0 \to K^- K^{*+}$	$T_P,(E_V)$	4.5	4.25 ± 0.86	4.7 ± 0.8	4.37	4.37	4.38 ± 0.21
$D^0 o \eta ho^0$	$C_P, C_V, (E_P, E_V)$	0.24	1.11 ± 0.86	0.05 ± 0.01	0.54	0.45	
$D^{ m o} o \eta \omega$	$C_P, C_V, (E_P, E_V)$	1.9	3.08 ± 1.42	1.2 ± 0.3	2.4	2.0	
$D^0 o \eta \phi$	$C_P, (E_P, E_V)$	0.57	0.31 ± 0.10	0.23 ± 0.06	0.19	0.18	0.14 ± 0.05
$D^0 o \eta' ho^0$	$C_P, C_V, (E_P, E_V)$	0.10	0.14 ± 0.02	0.08 ± 0.02	0.21	0.27	
$D^0 o \eta' \omega$	$C_P, C_V, (E_P, E_V)$	0.001	0.07 ± 0.02	0.0001 ± 0.0001	0.04	0.02	
$D^+ ightarrow \pi^+ ho^0$	$T_V, C_P, (A_P, A_V)$	1.7		0.8 ± 0.7	0.42	0.58	0.81 ± 0.15
$D^+ \to \pi^+ \omega$	$T_V, C_P, (A_P, A_V)$	0.35		0.3 ± 0.3	0.95	0.80	< 0.34
$D^+ o \pi^+ \phi$	C_P	5.9	6.21 ± 0.43	5.1 ± 1.4	5.65	5.65	$5.42^{+0.22}_{-0.24}$
$D^+ \rightarrow \pi^0 \rho^+$	$T_P, C_V, (A_P, A_V)$	3.7		3.5 ± 1.6	2.7	2.5	
$D^+ \to K^+ \overline{K^*}^0$	$T_V,(A_V)$	2.5		4.1 ± 1.0	3.61	3.60	$3.675_{-0.21}^{+0.14}$
$D^+ \to \overline{K}^0 K^{*+}$	$T_P,(A_P)$	1.70		12.4 ± 2.4	11	11	32 ± 14
$D^+ o \eta ho^+$	$T_P, C_V, (A_P, A_V)$	0.002		0.4 ± 0.4	0.7	2.2	< 15
$D^+ o \eta' ho^+$	$T_P, C_V, (A_P, A_V)$	1.3		0.8 ± 0.1	0.7	0.8	
$D_s^+ \to \pi^+ K^{*0}$	$T_V,(A_V)$	3.3		1.5 ± 0.7	2.52	2.35	2.25 ± 0.39
$D_s^+ \to \pi^0 K^{*+}$	$C_V,(A_V)$	0.29		0.1 ± 0.1	0.8	1.0	
$D_s^+ o K^+ ho^0$	$C_P,(A_P)$	2.4		1.0 ± 0.6	1.9	2.5	2.7 ± 0.5
$D_s^+ \to K^+ \omega$	$C_P,(A_P)$	0.72		1.8 ± 0.7	0.6	0.07	< 2.4
$D_s^+ \to K^+ \phi$	$T_V, C_P, (A_V)$	0.15		0.3 ± 0.3	0.166	0.166	0.184 ± 0.045
$D_s^+ \to K^0 \rho^+$	$T_P,(A_P)$	19.5		7.5 ± 2.1	9.1	9.6	
$D_s^+ o \eta K^{\star +}$	$T_P, C_V, (A_P, A_V)$	0.24		1.0 ± 0.4	0.2	0.2	
$D_s^+ \to \eta' K^{*+}$	$T_P, C_V, (A_P, A_V)$	0.24		0.6 ± 0.2	0.2	0.2	

[Qin, Li, Lu, FSY, PRD2014]

Observation/evidence of $D \rightarrow \omega \pi$

Double tag method

PRL116(2016)082001

Decay mode	This work	Previous meausurements
$D^+ \to \omega \pi^+$	$(2.74\pm0.58\pm0.17)\times10^{-4}$	$< 3.4 \times 10^{-4}$ at 90% C.L.
$D^0\to\omega\pi^0$	$(1.05\pm 0.41\pm 0.09)\times 10^{-4}$	$< 2.6 \times 10^{-4}$ at 90% C.L.
$D^+ \to \eta \pi^+$	$(3.13\pm 0.22\pm 0.19)\times 10^{-3}$	$(3.53 \pm 0.21) \times 10^{-3}$
$D^0 \to \eta \pi^0$	$(0.67\pm 0.10\pm 0.05)\times 10^{-3}$	$(0.68\pm 0.07)\times 10^{-3}$

Studies of singly cabibbosuppressed decays is limited by data set and background

Benefit the understanding of SU(3) symmetry breaking and CP violation, improve theory calculation

Two-body decays of D_s⁺

首次确认重子衰变D_s⁺→pπ

(a) Short-distance effects

(b) Long-distance effects

首次确认纯湮灭衰变 $D_s^+ \rightarrow \omega \pi^+$ 并首次测定 $D_s^+ \rightarrow \omega K^+$

Under the model-independent approach: $A(D_s^+ \to \omega \pi^+) = \frac{1}{\sqrt{2}} (A_P + A_V)$ $(A_{P,V}: P, V \text{ contain } \overline{q}' \text{ of } q \overline{q}' \text{ configuration })$

Signal mode	Branching fraction (${f 10^{-3}}$)
$D_s^+ \to \omega \pi^+$	$1.85 \pm 0.30(stat.) \pm 0.19(sys.)$
$D_s^+ \to \omega K^+$	$1.13 \pm 0.24(stat.) \pm 0.14(sys.)$

Amplitude analyses of D decays

PRD89(2014)052001

Help to determine the absolute BF, strong phase, benefit γ/ϕ_3

ratual Dianching Fraction (70)
$0.32 \pm 0.05 \pm 0.25 \substack{+0.28 \\ -0.25}$
$5.83 \pm 0.16 \pm 0.30^{+0.45}_{-0.15}$
$0.15 {\pm} 0.02 {\pm} 0.09 {+} {0.07 \atop -0.11}$
$0.250 \pm 0.012 \pm 0.015^{+0.025}_{-0.024}$
$0.26 \pm 0.04 \pm 0.05 \pm 0.06$
$0.09 \pm 0.01 \pm 0.05^{+0.04}_{-0.08}$
$0.54 \pm 0.09 \pm 0.28^{+0.36}_{-0.19}$
$1.30 \pm 0.12 \pm 0.12 \substack{+0.12 \\ -0.30}$
$1.21 \pm 0.10 \pm 0.16 \substack{+0.19 \\ -0.27}$

Previous analyses only from MarkIII and E691

$\Lambda_{\rm c}{}^{\rm +}\,\text{decays}$

Measurements before 2014

> Λ_c^+ was observed in 1979

> All decays of Λ_c^+ were measured with high energy data and relative to pK⁻ π^+ , which suffers an error of 25%. No absolute measurement using threshold Λ_c^+ data

> Only about 60% decays are known

Ac DECAY MODES	F	Fraction (Γ _i /Γ)	Scale factor/ Confidence level	р (MeV/c)
Hadronic modes wi	ith a	a p: S = -1 find	al states	
$p\overline{K}^0$		$(2.3 \pm 0.6)\%$		873
$pK^{-}\pi^{+}$	[a]	(5.0 \pm 1.3)%		823
$p\overline{K}^{*}(892)^{0}$	[<i>b</i>]	(1.6 \pm 0.5) %		685
$\Delta(1232)^{++}K^{}$		(8.6 \pm 3.0) \times	10-3	710
$\Lambda(1520)\pi^+$	[<i>b</i>]	(1.8 \pm 0.6)%		627
$pK^{-}\pi^{+}$ nonresonant		$(2.8 \pm 0.8)\%$		823
$p\overline{K}^0\pi^0$		$(3.3 \pm 1.0)\%$		823
$p\overline{K}^0\eta$		(1.2 \pm 0.4) %	,	568

Systematic studies of Λ_c^+ , search for new decays, absolute BF measurements are important to explore Λ_c^+ decay mechanisms⁴³

Improved BFs of $\Lambda_c^+ \rightarrow$ hadronic decays

BELLE, PRL113(2014)042002

BESIII, PRL116(2016)052001

 $B[\Lambda_{c}^{+} \rightarrow pK^{-}\pi^{+}] = (6.84 \pm 0.24^{+0.21}_{-0.27})\%$

First absolute BFs of $\Lambda_c^+ \rightarrow \Lambda l^+ v$

 $B[\Lambda_c^+ \rightarrow \Lambda e^+ \nu] = (3.63 \pm 0.38 \pm 0.20)\%$

3 fb⁻¹ data help to explore FF studies

 $\Gamma[\Lambda_{c}^{+} \rightarrow \Lambda \mu^{+} \nu_{\mu}] / \Gamma[\Lambda_{c}^{+} \rightarrow \Lambda e^{+} \nu_{e}] = 0.96 \pm 0.16 \pm 0.04$

Calibrate theoretical calculations: (1.4-9.2)%

Theoretical Models	predicated branching fraction for $\Lambda_c^+ \to \Lambda e^+ \nu_e$
MBM [1]	1.9%
NRQM [1]	2.6%
SU(4)-symmetry limit [2]	9.2%
RSQM [3]	4.4%
QCM [4]	5.62%
SQM [5]	1.96%
NRQM2 [6]	2.15%
NRQM3 [7]	1.42%
QCD SR1 [8]	(3.0±0.9)%
QCD SR2 [9]	$(2.6 \pm 0.4)\%$
QCD SR3 [9]	$(5.8 \pm 1.5)\%$
STSR [10]	2.22% for $\Lambda_c^+ \rightarrow \Lambda l^+ \nu_l$
STNR [10]	1.58% for $\Lambda_c^+ \rightarrow \Lambda l^+ \nu_l$
HOSR [10]	4.72% for $\Lambda_o^+ \longrightarrow \Lambda l^+ \nu_l$
HONR [10]	4.2% for $\Lambda_c^+ \rightarrow \Lambda l^+ \nu_l$
LCSRs [11]	$(3.0 \pm 0.3)\%$ for $\Lambda_c^+ \rightarrow \Lambda l^+ \nu_l$ (CZ-type)
PDG 2014 [14]	$(2.1 \pm 0.6)\%$
BESIII	$(3.63 \pm 0.38 \pm 0.20)\%$

Measurements of SCS decays $\Lambda_c^+ \rightarrow pK^+K^-/\pi^+\pi^-$

These help to distinguish predictions from different theoretical models and understand contributions from factorizable effects

Decay modes	$\mathcal{B}_{ extsf{mode}}/\mathcal{B}_{ extsf{ref}}$.	$\mathcal{B}_{ t mode}$	$\mathcal{B}(PDG)$
$\Lambda_c^+ \to p \pi^+ \pi^-$	$(6.70\pm0.48\pm0.25) imes10^{-2}$ ($(3.91\pm0.28\pm0.15\pm0.24) imes10^{-3}$	$(3.5\pm2.0) imes10^{-3}$
$\Lambda_c^+ o p \phi$	$(1.81\pm 0.33\pm 0.13) imes 10^{-2}$ ($(1.06\pm0.19\pm0.08\pm0.06) imes10^{-3}$.	$(8.2 \pm 2.7) imes 10^{-4}$
$\Lambda_c^+ \to p K^+ K^-$ (ne	on- $\phi angle$ $(9.36\pm2.22\pm0.71) imes10^{-3}$ ($(5.47 \pm 1.30 \pm 0.41 \pm 0.33) imes 10^{-4}$	$(3.5 \pm 1.7) imes 10^{-4}$

Observation of $\Lambda_c^+ \rightarrow nK_S\pi^+$

BESIII, PRL118 (2017) 112001

Help to understand SU(3) and isospin symmetry and determine strong phase Cai-Dian Lv et al, PRD93(2016)056008

 $\cos\delta$

$$=\frac{\mathcal{B}(n\bar{K}^0\pi^+)-\mathcal{B}(pK^-\pi^+)}{2\sqrt{\mathcal{B}(p\bar{K}^0\pi^0)(\mathcal{B}(pK^-\pi^+)+\mathcal{B}(n\bar{K}^0\pi^+)-\mathcal{B}(p\bar{K}^0\pi^0))}}$$

$$R_p = \frac{\mathcal{B}(\Lambda_c \to p\bar{K}^0\pi^0)}{\mathcal{B}(\Lambda_c \to pK^-\pi^+)}, \qquad R_n = \frac{\mathcal{B}(\Lambda_c \to n\bar{K}^0\pi^+)}{\mathcal{B}(\Lambda_c \to pK^-\pi^+)}$$

$$\begin{split} \mathbf{B}[\Lambda_{c}^{+} \rightarrow \mathbf{n} \mathbf{K}_{S} \pi^{+}] &= (1.82 \pm 0.23 \pm 0.11)\% \\ \Gamma[\Lambda_{c}^{+} \rightarrow \mathbf{n} \overline{\mathbf{K}}^{0} \pi^{+}] / \Gamma[\Lambda_{c}^{+} \rightarrow \mathbf{p} \mathbf{K}^{-} \pi^{+}] &= 0.62 \pm 0.09 \\ \Gamma[\Lambda_{c}^{+} \rightarrow \mathbf{n} \overline{\mathbf{K}}^{0} \pi^{+}] / \Gamma[\Lambda_{c}^{+} \rightarrow \mathbf{p} \overline{\mathbf{K}}^{0} \pi^{+}] &= 0.97 \pm 0.16 \\ \mathbf{First measurement of BF of } \Lambda_{c}^{+} \mathbf{decay} \\ \mathbf{containing neutron} \\ \cos \delta &= -0.24 \pm 0.08 \\ \overline{|I^{(1)}|} / |I^{(0)}| \quad 1.14 \pm 0.11 \end{split}$$

involving a neutron. Under the isospin symmetry, its amplitude is related to those of the most favored proton modes $\Lambda_c^+ \rightarrow p K^- \pi^+$ and $\Lambda_c^+ \rightarrow p \bar{K}^0 \pi^0$ as $\mathcal{A}(n \bar{K}^0 \pi^+) + \mathcal{A}(p K^- \pi^+) + \sqrt{2} \mathcal{A}(p \bar{K}^0 \pi^0) = 0$. Hence, precise measure-

[2,3]. In the three-body Λ_c^+ decay to $N\bar{K}\pi$, the total decay amplitudes can be decomposed into two isospin amplitudes of the $N\bar{K}$ system as isosinglet ($I^{(0)}$) and isospin-one ($I^{(1)}$). In the factorization limit, the color-allowed tree diagram, in which the π^+ is emitted and the $N\bar{K}$ is an isosinglet, dominates $I^{(0)}$, and $I^{(1)}$ is expected to be small compared to $I^{(0)}$ as it can only proceed through the color-suppressed tree diagrams. Though the factorization scheme is spoiled in

Observation of $\Lambda_c^+ \rightarrow \Sigma^- \pi^+ \pi^+ \pi^0$

BESIII, PLB772(2017)388

Preliminary results :

 $B[\Lambda_{c}^{+} \rightarrow \Sigma^{-} \pi^{+} \pi^{+}] = (1.81 \pm 0.17 \pm 0.09)\%$ $B[\Lambda_{c}^{+} \rightarrow \Sigma^{-} \pi^{+} \pi^{+} \pi^{0}] = (2.11 \pm 0.33 \pm 0.14)\%$ [First observation]

The previous one is consistent with and more precise than the PDG value of $[\Lambda_c^+ \rightarrow \Sigma^- \pi^+ \pi^+] = (2.3 \pm 0.4)\%$.

Evidence of $\Lambda_c^+ \rightarrow p\eta$ and search of $\Lambda_c^+ \rightarrow p\pi^0$

BESIII, PRD95(2017)111102(RC)

 $B[\Lambda_{c}^{+} \rightarrow p\eta] = (1.24 \pm 0.28 \pm 0.10) \times 10^{-3}$

$B[\Lambda_c^+ \rightarrow p\pi^0] < 2.7 \times 10^{-4} 90\% CL$

		*	
	$\Lambda_c^+ o p\eta$	$\Lambda_c^+ o p \pi^0$	$\frac{\mathcal{B}_{\Lambda_c^+ \to p\pi^0}}{\mathcal{B}_{\Lambda_c^+ \to p\eta}}$
BESIII	1.24 ± 0.29	< 0.27	< 0.24
Sharma et al. [3]	$0.2^{a}(1.7^{b})$	0.2	$1.0^{a}(0.1^{b})$
Uppal et al. [4]	0.3	0.1 - 0.2	0.3-0.7
S. L. Chen et al. [12]		$0.11 - 0.36^{\circ}$	
Cai-Dian Lü et al. [13]		0.45	

^aAssumed to have a positive sign for the p-wave amplitude of $\Lambda_c^+ \to \Xi^0 K^+$.

^bAssumed to have a negative sign for the p-wave amplitude of $\Lambda_c^+ \to \Xi^0 K^+$.

^cCalculated relying on different values of parameters b and α .

Larger threshold Λ_c^+ data at BESIII

国际粲重子 Λ_c^+ 衰变实验研究的里程碑: BESIII开辟使用近阈数据绝对测量 Λ_c^+ 衰变的新领域

37天数据已发表7篇物理文章, 其中4篇PRL

	Golden hadronic mode	δB/B	Golden SL mode	δB/B
D ⁰	B(Kπ)=(3.88±0.05)%	1.3%	B(Kev)=(3.55±0.05)%	1.4%
D+	В(Клл)=(9.13±0.19)%	2.1%	B(K ⁰ ev)=(8.83±0.22)%	2.5 %
D_{s}	B(KKpi)=(5.39±0.21)%	3.9%	B(фev)=(2.49±0.14)%	5.6%
Λc	B(pKπ)=(5.0±1.3)%(PDG2014) =(6.8±0.36)% (BELLE) =(5.84±0.35)% (BESIII) =(6.46±0.24)% (HFAG)	26% 5.3% 6.0% 3.7%	B(Λev)=(2.1±0.6)%(PDG2014) =(3.63±0.43)% (BESIII) =(3.18±0.32)% (HFAG)	29% 12% 10%

更高能量4.62-4.63 GeV,更大近 阈Λ_c⁺样本?改进已有衰变精度, 半轻形状因子,寻找40%未知衰 变...

Summary

- D⁰⁽⁺⁾研究取得一些重要物理成果
 - --D+衰变常数f_{D+}
 - --形状因子f^{D→K(π)}+(q²)
 - --CKM矩阵元|V_{cs(d)}|
 - --D⁰D⁰混合参数y_{CP}, δ_{Kπ}
 - **--D⁰→K**sπ⁺π⁻强相差初步结果

→精密检验格点QCD计算 和CKM矩阵幺正性、探讨 D⁰D⁰混合、约束γ/φ₃测量

■ Λ_c+衰变的系统研究结束了其发现近40年来无近阈数据绝对测量的历史

■ 2016年,在4.178 GeV采集了3.2 fb⁻¹ D_s+数据。已取得D_s+衰变 常数f_{Ds+}、CKM矩阵元|V_{cs}|等初步结果

■ 更多物理结果将在未来1-2年完成

Observation of DCS decay of $\Lambda_c^+ \rightarrow pK^+\pi^-$

BELLE, PRL117(2016)011801

FIG. 1. Typical external (internal) W-emission diagrams for (a) [(c)] $\Lambda_c^+ \to p K^+ \pi^-$ and (b) [(d)] $\Lambda_c^+ \to p K^- \pi^+$, and (e) a typical W-exchange diagram of $\Lambda_c^+ \to p K^- \pi^+$.

$B[\Lambda_{c}^{+} \rightarrow pK^{+}\pi^{-}]/B[\Lambda_{c}^{+} \rightarrow pK^{-}\pi^{+}] \sim \tan^{4}\theta$ sin $\theta \sim 0.225 \pm 0.001$

$B[\Lambda_{c}^{+} \rightarrow pK^{+}\pi^{-}]/B[\Lambda_{c}^{+} \rightarrow pK^{-}\pi^{+}] \sim (2.35 \pm 0.27 \pm 0.21)\%$

Search for penta-quark in $\Lambda_c^+ \rightarrow pK^+K^-\pi^0$

BELLE, PRD96(2016)051102(RC)

FIG. 1. Feynman diagram for the decay (a) $\Lambda_c^+ \to \phi p \pi^0$ and (b) $\Lambda_c^+ \to P_s^+ \pi^0$.

Inspired by the observation of two hidden-charm pentaquark states P_c +(4380) and P_c +(4450) in J/ ψ p invariant mass spectrum at LCHb

Search for hidden-stangeness pentaquark states in ϕp invariant mass spectrum

Measurements of $\Lambda_c^+ \rightarrow pK^+K^-/p\pi^+\pi^-/pK^-\pi^+$

LHCb, 1711.01157[hep-ex]

 $\Lambda_b^0 \rightarrow \Lambda_c^+(phh')\mu^-\overline{\nu}_\mu$ selection

1 fb⁻¹ data @ 7 TeV

Prompt $\Lambda_c^+ \to phh'$ selection

 $\frac{\partial (L_c^+ \to pK^-\pi^+)}{\partial (\Lambda_c^+ \to pK^-\pi^+)} = (1.70 \pm 0.03 \pm 0.03) \%, \qquad \mathcal{B}(\Lambda_c^+ \to p\pi^-\pi^+) = (4.72 \pm 0.05 \pm 0.11 \pm 0.25) \times 10^{-3}, \\ \frac{\mathcal{B}(\Lambda_c^+ \to p\pi^-K^+)}{\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)} = (0.165 \pm 0.015 \pm 0.005) \%, \qquad \mathcal{B}(\Lambda_c^+ \to p\pi^-K^+) = (1.08 \pm 0.02 \pm 0.02 \pm 0.02 \pm 0.06) \times 10^{-3}, \\ \mathcal{B}(\Lambda_c^+ \to p\pi^-K^+) = (1.04 \pm 0.09 \pm 0.03 \pm 0.05) \times 10^{-4}, \end{cases}$

Analysis of $D^+ \rightarrow K_L e^+ v$

> Regardless of long flight distance, K_L interact with EMC and deposit part of energy, thus giving position information

> After reconstructing all other particles, K_L can be inferred with position information and constraint $U_{miss} \rightarrow 0$

$\overline{B}(D^+ \rightarrow K_L e^+ v) = (4.482 \pm 0.027 \pm 0.103)\%$

$$A_{CP} \equiv \frac{\mathcal{B}(D^+ \to K_L^0 e^+ \nu_e) - \mathcal{B}(D^- \to K_L^0 e^- \bar{\nu}_e)}{\mathcal{B}(D^+ \to K_L^0 e^+ \nu_e) + \mathcal{B}(D^- \to K_L^0 e^- \bar{\nu}_e)}$$
$$\mathbf{A_{CP}}^{\mathbf{D}+\mathbf{\forall KLe+v}} = (-0.59 \pm 0.60 \pm 1.50)\%$$

Simultaneous fit to event density I(q²) with 2-par. series Form Factor

 $f_{+}^{K}(0)|V_{cs}| = 0.728 \pm 0.006 \pm 0.011$

 $r_1 = a_1/a_0 = -1.91 \pm 0.33 \pm 0.24$

Absolute BF for $D^+ \rightarrow \overline{K}^0 e^+ v$ via $\overline{K}^0 \rightarrow \pi^0 \pi^0$

 $\frac{\Gamma[D^0 \to K^- e^+ v]}{\overline{\Gamma}[D^+ \to \overline{K}^0 e^+ v]} = 0.969 \pm 0.025$

Agrees with isospin conservation within 1.2σ

Improved BF for $D^+ \rightarrow \bar{K}^0 \mu^+ v$

Taking B[D⁰→K[•]μ⁺v] and B[D⁺→K⁰e⁺v] from the PDG as input

$$\frac{\Gamma[D^0 \to K^- \mu^+ \nu]}{\overline{\Gamma}[D^+ \to \overline{K}^0 \mu^+ \nu]} = 0.963 \pm 0.044$$
$$\frac{\Gamma[D^+ \to \overline{K}^0 \mu^+ \nu]}{\Gamma[D^+ \to \overline{K}^0 e^+ \nu]} = 0.988 \pm 0.033$$

Support isospin conservation in these two decays within errors

Consistent with theory prediction 0.97 within error ⁵⁸

Measurements of BFs of $D_s^+ \rightarrow \eta^{(')}e^+v$

Benefit the understanding of the source of difference of inclusive decay rates of D⁰⁽⁺⁾ and D_s⁺

Complementary information to understand η-η' mixing

482 pb⁻¹ data@4.009 GeV, PRD94(2016)112003

Studies of $D_s^+ \rightarrow K^{(*)0}e^+v$ at 4.178 GeV

Taking |V^{CKMfitter}_{cd}| as input

r₂=0.77±0.28±0.07

Inclusive decay $\Lambda_c^+ \rightarrow \Lambda X$

$$\mathcal{A}_{\rm CP} = \frac{\mathcal{B}(\Lambda_c^+ \to \Lambda + X) - \mathcal{B}(\bar{\Lambda}_c^- \to \bar{\Lambda} + X)}{\mathcal{B}(\Lambda_c^+ \to \Lambda + X) + \mathcal{B}(\bar{\Lambda}_c^- \to \bar{\Lambda} + X)}.$$

Help to explore the source of missing decays and search for new decay. Better input for charm baryon and B physics

 $\Lambda_{c}^{+} \rightarrow pK^{-}\pi^{+}$

^{2.29} ^{2.295} ^{2.3} M_{bc} (GeV/c²)

$$N_{sig} = N_S - (N_A + N_B)/2 - r \cdot N_D + r \cdot (N_C + N_E)/2$$
$$B(\Lambda_C^+ \to \Lambda + X) = (36.98 \pm 2.18)\% \text{ stat. only}$$

Agrees with PDG2015 value (35±11)%,

Decay mode	Branching fraction(%)	$\mathcal{A}_{ ext{CP}}$
$\Lambda_c^+ \to \Lambda + X$	38.02 ± 3.24	0.02 ± 0.06
$\bar{\Lambda}_c^- \to \bar{\Lambda} + X$	36.70 ± 3.04	0.02 ± 0.00 :

Absolute BFs and y_{CP} of $D^0 \rightarrow K_{S/L} \pi^0(\pi^0)$

- Two dimensional fits to M_{BC}(tag) versus M_{BC}(signal)
- Projections of DT evens on the $M_{BC}(sig)$ vs. $K\pi$ (for example)

Branching fractions and asymmetries Statistical only

$$R(D \to K_{S,L} + \pi's) = \frac{Br(D \to K_S\pi's) - Br(D \to K_L\pi's)}{Br(D \to K_S\pi's) + Br(D \to K_L\pi's)}$$

Table 1	10:	Decay	rates	and	the	asymmetries	of	$D \rightarrow$	$K^{0}_{SL}\pi^{0}$	and	$D \rightarrow$	$K^{0}_{SL}\pi^{0}$	π^{0} .
									D.L			D.L	

$D \to K^0_{S,L} \pi^0$								
	$Br_{K_S\pi^0}(\%)$	$Br_{K_L\pi^0}(\%)$	$R(D \to K_{S,L}\pi^0)$					
$K\pi$	$1.208 {\pm} 0.041$	$1.061 {\pm} 0.038$	$0.0646 {\pm} 0.0245$					
$K3\pi$	$1.212 {\pm} 0.037$	$0.985 {\pm} 0.036$	$0.1035 {\pm} 0.0237$					
$K\pi\pi^0$	1.251 ± 0.028	$0.953{\pm}0.029$	$0.1351 {\pm} 0.0186$					
All	$1.230 {\pm} 0.020$	$0.991{\pm}0.019$	$0.1077 {\pm} 0.0125$					
	$D \to K^0_{SL} \pi^0 \pi^0$							
$Br_{K_S2\pi^0}(\%) \mid Br_{K_L2\pi^0}(\%) \mid R(D \to K_{S,L}2)$								
$K\pi$	$1.024{\pm}0.049$	$1.299 {\pm} 0.080$	-0.1183 ± 0.0385					
$K3\pi$	0.887 ± 0.043	$1.097 {\pm} 0.073$	-0.1060 ± 0.0409					
$K\pi\pi^0$	$1.010 {\pm} 0.036$	$1.158 {\pm} 0.060$	-0.0681 ± 0.0313					
All	$0.975 {\pm} 0.024$	$1.175 {\pm} 0.040$	-0.0929 ± 0.0209					

 y_{CP} ((K_Sπ⁰, K_Lπ⁰) vs. Kev) = (0.98±2.43)%

Absolute BFs and A_{CP} of $D^+ \rightarrow K_{S/L}K^+(\pi^0)$

BFs of D⁺ \rightarrow 2K_sK(π)⁺ and D⁰ \rightarrow 2(3)K_s

Comprehensive or improved measurements of 3-body decays benefit the understanding of the interplay between weak and strong interactions in multibody decays, where theory is poor than 2-body decays

PLB765(2017)231

BF of $D^0 \rightarrow K_S K_S$ will be helpful to explore the SU(3) symmetry breaking in D decays

Comparisons of the branching fractions (in 10⁻⁴) measured in this work with the PDG values

Decay modes	This work	PDG
$D^+ \rightarrow K^0_S K^0_S K^+$	$25.4 \pm 0.5 \pm 1.2$	45 ± 20
$D^+ \rightarrow K^0_S K^0_S \pi^+$	$27.0 \pm 0.5 \pm 1.2$	-
$D^0 \rightarrow K^0_S K^0_S$	$1.67 \pm 0.11 \pm 0.11$	1.7 ± 0.4
$D^0 \rightarrow K^0_S K^0_S K^0_S$	$7.21 \pm 0.33 \pm 0.44$	9.1 ± 1.3

64

$D_{s}^{+} \rightarrow \eta' X \text{ and } \eta' \rho^{+}$

 $B_{CLEO}[D_s^+ \rightarrow \eta' \rho^+] = (12.5 \pm 2.2)\%$

是理论预期(3.0±0.5)%的4倍

 $B_{MSR}[D_{s}^{+} \rightarrow \eta' X] = (11.7 \pm 1.8)\%$

PRD58(1998)052002

F.S.Yu PRD84(2011)074019

PRD79(2009)112008

 $B^{PDG14}_{SUM}[D_{s}^{+} \rightarrow \eta' X] = (18.6 \pm 2.3)\%$

PLB 750(2015)466

 $N[D_s^+ \rightarrow \eta' X] = 68 \pm 14$

 $N[D_s^+ \rightarrow \eta' \rho^+] = 210 \pm 50$

 $B[D_{s}^{+} \rightarrow \eta' X] = (8.8 \pm 1.8 \pm 0.5)\%$ B[D_{s}^{+} \rightarrow \eta' \rho^{+}] = (5.8 \pm 1.4 \pm 0.4)\%与CLEOPRD88(2013)032009一致

新实验结果解决了实验和理论不一致的矛盾

BFs of D⁰⁽⁺⁾**>PP**

For $D^0 \to K^0_S \eta$, $D^+ \to \pi^0 \pi^+$, $D^+ \to \eta \pi^+$, $D^+ \to \eta' \pi^+$, $D^+ \to K^0_S \pi^+$ and $D^+ \to K^0_S K^+$, it shows better precision than the present values.

- The study of the hadronic decays of charmed D mesons is of great significance in the study of the strong and weak interactions in D decays.
- ◆ The analysis on D → PP modes will provide materials for the study of SU(3) breaking effect¹. And the observation of CP violation in D decay is commonly believed to be indications of new physics.
- $D^0 \rightarrow K^- \pi^+$ is an important normalization mode.
- Most of the D decays have been studied by CLEO in 2010², other measurements come from Belle³, BaBar⁴ and CDF⁵, etc.
- Some of the branching fractions (BFs) are not well established. With the 2.93 fb⁻¹ data taken at 3.773 GeV within BESIII, the results will help to improve these measurements.

	Mode	N ^{net} signal	ϵ (%)	${\cal B}\pm({\sf stat})\pm({\sf sys})$	\mathcal{B}_{PDG}
	$\pi^{+}\pi^{-}$ $K^{-}\pi^{+}$ $K^{0}_{S}\pi^{0}$ $K^{0}_{S}\eta$ $K^{0}_{S}\eta'$	$\begin{array}{c} 21105 \pm 249 \\ \hline 443 \pm 273 \\ 537745 \pm 767 \\ 66539 \pm 302 \\ 9532 \pm 126 \\ 3007 \pm 61 \end{array}$	$\begin{array}{c} 66.03 \pm 0.25 \\ 62.82 \pm 0.32 \\ 64.98 \pm 0.09 \\ 38.06 \pm 0.17 \\ 31.96 \pm 0.14 \\ 12.66 \pm 0.08 \end{array}$	$\begin{array}{c} (1.505\pm0.018\pm0.031)\times10^{-3}\\ (4.229\pm0.020\pm0.087)\times10^{-3}\\ (3.896\pm0.006\pm0.073)\%\\ (1.236\pm0.006\pm0.032)\%\\ (5.149\pm0.068\pm0.134)\times10^{-3}\\ (9.562\pm0.197\pm0.379)\times10^{-3} \end{array}$	$\begin{array}{c}(1.421\pm 0.025)\times 10^{-3}\\(4.01\pm 0.07)\times 10^{-3}\\(3.93\pm 0.04)\ \%\\(1.20\pm 0.04)\ \%\\(4.85\pm 0.30)\times 10^{-3}\\(9.5\pm 0.5)\times 10^{-3}\end{array}$
3	$ \pi^{0}\pi^{+} \\ \pi^{0}K^{+} \\ \eta\pi^{+} \\ \etaK^{+} \\ \eta'\pi^{+} \\ \eta'K^{+} \\ K^{0}_{S}\pi^{+} \\ K^{0}_{S}K^{+} $	$\begin{array}{c} 10108 \pm 267 \\ 1834 \pm 168 \\ 11636 \pm 215 \\ 439 \pm 72 \\ 3088 \pm 83 \\ 87 \pm 25 \\ 93884 \pm 352 \\ 17704 \pm 151 \end{array}$	$\begin{array}{c} 48.98 \pm 0.34 \\ 51.52 \pm 0.42 \\ 46.96 \pm 0.25 \\ 48.21 \pm 0.31 \\ 21.49 \pm 0.18 \\ 22.39 \pm 0.22 \\ 51.38 \pm 0.18 \\ 48.45 \pm 0.14 \end{array}$	$\begin{array}{c} (1.259\pm 0.033\pm 0.025)\times 10^{-3}\\ (2.171\pm 0.198\pm 0.060)\times 10^{-4}\\ (3.790\pm 0.070\pm 0.075)\times 10^{-3}\\ (1.393\pm 0.228\pm 0.124)\times 10^{-4}\\ (5.122\pm 0.140\pm 0.210)\times 10^{-3}\\ (1.377\pm 0.428\pm 0.202)\times 10^{-4}\\ (1.591\pm 0.006\pm 0.033)\times 10^{-2}\\ (3.183\pm 0.028\pm 0.065)\times 10^{-3} \end{array}$	$\begin{array}{c} (1.24\pm0.06)\times10^{-3}\\ (1.89\pm0.25)\times10^{-4}\\ (3.66\pm0.22)\times10^{-3}\\ (1.12\pm0.18)\times10^{-4}\\ (4.84\pm0.31)\times10^{-3}\\ (1.83\pm0.23)\times10^{-4}\\ (1.53\pm0.06)\times10^{-2}\\ (2.95\pm0.15)\times10^{-3} \end{array}$

Status of rare D⁰ decays

Status of rare D(s)⁺ **decays**

So far, no rare D decay is found