Introductory remarks

João Guimarães da Costa

November 22, 2017

Institute of High Energy Physics Chinese Academy of Sciences

News

November Workshop Successful!: Nov 6-8

- http://indico.ihep.ac.cn/event/6618/overview
- About 250 attendees with over 70 from abroad
 - Busy parallel sessions and plenty of discussions

International Advisory Committee Meeting: Nov 8-9

- Preliminary recommendations/concerns
 - Encouraged to pursue the internationalization of the project
 - e.g. including international conveners in the organization
 - Concern about lack of engineering information on how to build the detector and in particular the calorimeter
 - Concern about lack of DAQ/Trigger chapter in CDR. We were encouraged to include it in the final version
 - The detector optimization should be clarified and the justification for the need of a 3-Tesla magnet should be made clear
 - The path for a decision on the detector concepts should be made clear

• Hong Kong IAS Program on High Energy Physics 2018

- Program: 8-26 January 2018; Conference: 22-25 January 2018
- Calorimeter workshop: 18-19 January 2018
- http://iasprogram.ust.hk/hep/2018/index.html

中国科学院高能物理研究所

CEPC Detector CDR Mini-review

- November 10-11
 - <u>http://indico.ihep.ac.cn/event/7384/</u>
 - Very active discussions throughout both days
 - Participation from our side could have been better in particular, we need to concern about the interface of each part so that the text is well integrated
- Reviewers:
 - Jianming Qian, University of Michigan
 - Sebastian Grinstein, University of Barcelona
 - Alberto Belloni, University of Maryland
 - Charlie Young, SLAC
 - Sasha Glazov, DESY
 - Daniela Bortolleto, Oxford University (writing)
 - Massimo Caccia, University of Insubria, Italy (writing)
- Input:
 - Mostly provided orally at the mini-review to conveners and representatives of the different detector parts
 - Written contributions so far posted to this agenda

中国科学院高能物理研究所 CEPC Detector CDR Mini-review

Friday, 10 November 2017			Saturday, 11 November 2017			
08:30 - 08:40	Welcome Convener: Jose Guimaraes Costa		06:30 - 11:30	Calorii Conven	meter ers: Dr. Jianbei Liu (University of Science and Technology of China), Haijun Yang (Shanghai Jiao Tong	•
08:40 - 05:10	Introduction Convener: Joao Guimaraes Costa Material: slides 1			08:30	University), Prof. Tao HU (IHEP) ECAL chapter overview 10' Speakers: Haijun Yang (Shanghai Jiao Tong University), Prof. Tao HU (IHEP) Meterial: Sildes 🔂	Ŧ
09010 - 10010	Physics Motivation Convener: Liantao Wang (University of Chicago)	Ŧ		08:40	Discussion 40'	Ψ.
	09:10 Chapter overview 15'	-		09:20	HCAL chapter overview 10'	¥.
	09:25 Discussion 45*	-			Speakers: Haijun Yang (Shanghai Jiao Tong University), Prof. Tao HU (IHEP)	
10:10 - 10:50	Coffee 20'	*			Metenal: Sildes 🖭	
10:30 - 12:30	Physics performance	Ŧ		09:30	Discussion 40'	₹.
	Conveners: Mr. Mangi Ruan (THEP), LI Gang (EPC.THEP), Prof. Yaquan FANG Yaquan (####P), Dr. Qang Li (School of physics, Peking University)			10:10	Coffee 30'	_
	Material: slides 🔂			10:40	Dual-Readout chapter overview 10' Speaker: Haitur Yang (Shapshai Jao Tong University)	▼.
	10:30 chapter overview 10'	-			Meterial: Slides [7]	
	10:40 Discussion 15:01	Ŧ		10:50	Discussion 40'	-
12:30 - 13:00	Lunch 30'	Ŧ	11-30 - 12-50	Translati	na Curterni Difti Chamber	
13:00 - 13:30	MDI: Background Estimation	Ŧ	11.50 - 12.60	Conven	ng Bystem: Dhit Chamber er: Francesco Grancagnolo (INEN-Lecce)	
	Convener: Dr. Hongbo ZHU (IHEP) 13:00 Chapter everyiew 10	*		11:30	chapter overview 10'	7
	Speaker: Dr. Hongbo ZHU (IHEP)				Speaker: Francesco Grancagnolo (INFN-Lecce)	
	Material: Slides 🔁				Matanal: Slides i 🖬 i 🎼	
	13:10 Discussion 20*	-		11:40	Discussion 50'	7
13:30 - 14:00	MDI: LumiCal	Ŧ	12:30 - 14:00	Lunch		7
	Convener: Suen Hou (高融行)	_	14:00 - 15:00	Muon	system	7
	13:30 Chapter overview 10'	-		Conven 14:00	er: Prof. Liang Li (Shanghai Jiao Tong University)	
	13/40 Discussion 20*	<u> </u>		11.00	Speaker: Prof. Lang Li (Shanghai Jiao Tong University)	
14:00 - 15:00	Tracking System: Vertex Convener: Prof. Our OUYANG (IHEP)	*			Material: Slides 🖓	
	14:00 Chapter overview 10'	-		14:10	Discussion 50'	▼.
	Speaker: Prof. Qun CUYANG (IHEP)		15:00 - 15:30	Coffee		•
	Mavena : Sildes (2)	_	15:30 - 16:30	Magno	t	-
	14:10 Discussion 50*	*		Conven	ers: Mr. Zian ZHU Zian (高銳所), Dr. Beipeng NING Feipeng (高能所)	
16:00 - 15:80	Coffee	-		15:30	Chapter overview 10'	Ψ.
15:30 - 16:30	Tracking System: silicon tracker Convener: Prof. Mana Wana (Shandona University)	Ŧ			Speaker: Dr. Feipeng NIN's Feipeng (#182%) Material:	
	15:20 Chapter overview 10'	Ŧ				_
	Speaker: Mr. Qingyuan LTU (Shandong University)			15:40	Discussion 30'	•
	Materia : Sildes 74		16:30 - 17:00	Summ	ary	Ψ.
	15:40 Discussion 50*	*				
16:30 - 17:80	Tracking System: TPC	Ŧ				
	16:30 Chapter overview 10' Speaker: Dr. Huirong Qi (Institute of High Energy Physics, CAS) Material: Sildes 2	¥				
	16:40 Discussion 50*	-				
17:30 - 18:30	Tracking System: All-silicon	Ŧ				
	Convener: Dr. Weiming Yao (LBNL)	-				
	Motoriol: Stides 🏗	-				
	17:40 Discussion 50"	*				4

CEPC Detector CDR Mini-review: Some Points Raised

- Need for introduction and overview chapter!
- Re-organization proposal:
 - Two detector concepts described in completely separate chapters
 - Advantage: Clear to the reader what is what
 - Disadvantages: Concepts are not developed at the same level; separation of communities
- Need for chapter with detector requirements
- Making sure the numbers are internally consistent
- Text in document is very much like a technical paper, turn this more into a real CDR, e.g. drop technical details on test beams
- Make connection between theory and physics benchmarks
- Muon detector description should be simplified
- Need chapter on trigger and DAQ
- Need some information on engineering aspects

CDR Next Steps

- Planned Final Release: Spring 2018
 - Steering Group meeting on Dec 29
 - Finalize planning for CDR release
 - Possible timescale (for discussion):
 - Start harmonization of text and introduction chapters now
 - Complete draft of each chapter by Jan 2017
 - Editing and internal review: Feb-Mar 2017
 - International review: April 2018
 - Implementation of suggestions: May 2018
 - Public release: May-June 2018

Extra Slides

中国科学院高能物理研究所

International Advisory Committee Meeting

- The fourth CEPC IAC meeting: November 8-9
 - <u>http://indico.ihep.ac.cn/event/7390/</u> <u>overview</u>
 - Some overlap with the workshop on November 8
 - Activities to start at 5 pm
 - CEPC CDR Status report to be presented on November 8
 - Main goal of this meeting is the discussion on how to broaden the internationalization of the CEPC project

International Advisory Committee

Young-Kee Kim, U. Chicago (Chair) Barry Barish, Caltech Hesheng Chen, IHEP Michael Davier, LAL Brian Foster, Oxford Rohini Godbole, CHEP, Indian Institute of Science David Gross, UC Santa Barbara George Hou, Taiwan U. Peter Jenni, CERN Eugene Levichev, BINP Lucie Linssen, CERN Joe Lykken, Fermilab Luciano Maiani, Sapienza University of Rome Michelangelo Mangano, CERN Hitoshi Murayama, UC Berkeley/IPMU Katsunobu Oide, KEK Robert Palmer, BNL John Seeman, SLAC Ian Shipsey, Oxford Steinar Stapnes, CERN Geoffrey Taylor, U. Melbourne Henry Tye, IAS, HKUST Yifang Wang, IHEP Harry Weerts, ANL

中国科学院高能物理研究所

Last Week's Version

8.2

8.2.1

8.2.2

The Magnetic Field Requirements and Design

Main parameters

Magnetic field design

C	CNC	TENTS			4.8	4.7.2 Future R&D Summary		
				5	The	e silicon tracker		
					5.1	Baseline design		
					5.2	Sensor technologies		
					5.3	Front-End electronics		
					5.4	Powering and cooling		
					5.5	Mechanics and integration		
					5.6	tracking performance		
Ack	Acknowledgments		111	5		0.7 Critial R&D		
1	Intro	duction	1	6	Tra	cking system		
	1.1	The CEPC-SPPC Study Group and the CDR	1		6.1	TPC tracker detector		
	1.2	The Case for the CEPC-SppC in China	1			6.1.1 Baseline design and mechanics		
	13	The Science in the CDR	-			6.1.2 Simulation and estimation for the key issues		
	1.5	The Accelerator and the Experiment	1		62	Full-silicon tracker detector		
	1.7	The Accelerator and the Experiment	1		0.2	6.2.1 Full silicon tracker layout		
2		wiew of the Physics Case for CEPC-SonC	3			6.2.2 Toy simulation		
-	0101		6			6.2.3 Detector simulation and reconstruction		
	2.1	New Colliders for a New Frontier	4			6.2.4 Tracking performance		
						6.2.5 Conclusion		
3	Expe	erimental conditions and detector requirements	5		6.3	Drift chamber tracker detector		
	3.1	New Colliders for a New Frontier	6	7	Cal	orimetry		
	Vort		7		7.1	Introduction to calorimeters		
4	verte	5X	/		7.2	Electromagnetic Calorimeter for Particle Flow Approach		
	4.1	Performance Requirements and Detector Challenges	7			7.2.1 Silicon-Tungsten Sandwich Electromagnetic Calorimeter		
	4.2	Baseline design	8			7.2.2 Scintillator-Tungsten Sandwich Electromagnetic Calorimeter		
	4.3	Detector performance studies	8		7.3	Hadronic Calorimeter for Particle Flow Approach		
		4.3.1 Performance of the Baseline Configurations	9			7.3.2 Semi-Digital Hadronic Calorimeter (SDHCAL)		
		4.3.2 Material Budget	9			7.3.2 Analog Hadronic Calorimeter based on Scintillator and SiPM		
		4.3.3 Dependence on Single-Point Resolution	9		7.4	Dual-readout Calorimetry		
		4.3.4 Distance to IP	11			7.4.1 Introduction		
	4.4	Beam-induced Background in the Vertex Detector	11			7.4.2 Dual-Readout Calorimetry		
	4 5	Sensor Technology Ontions	11			7.4.3 Layout and Mechanics		
	4.6	Mechanics and Integration	13			7.4.4 DREAM/RD52 Prototype Studies		
	л.0 Д 7	Critical R&D	15			7.4.5 Sensors and Readout Electronics		
	4./	471 Current P&D activities	15			7.4.6 Monte Carlo Simulations		
		4.7.1 Current K&D activities	15			1.4.1 Final Kemarks		
			v	8	Det	ector magnet system		
					8.1	General Design Considerations		

15 16

25 25 26

29

45 45

47

48

54 54 54

55

95 95

96

96 96

CONTENTS **vii**

		8.2.3	Coil mechanical analysis	97
		8.2.4	Preliminary quench analysis	102
	8.3	HTS/L	ΓS Superconductor Options	105
		8.3.1	HTS plan background	105
		8.3.2	The latest development of high temperature superconducting cable	109
		8.3.3	HTS magnetic design	111
		8.3.4	Future work of HTS plan	112
	8.4	Soleno	id Coil Design	114
		8.4.1	Solenoid Coil Structure	114
		8.4.2	R&D of Superconducting Conductor	114
		8.4.3	Coil fabrication and assembly	116
	8.5	Magne	t Cryogenics Design	116
		8.5.1	Preliminary Simulation of the Thermosyphon Circuit	116
		8.5.2	Preliminary results for 10:1 scale model	118
		8.5.3	Experiment of a small-sized He thermosiphon	119
		8.5.4	Cryogenic Plant Design	120
	8.6	Quench	Protection and Power supply	123
		8.6.1	power supply	123
		8.6.2	control and safety systems	123
	8.7	Iron Yo	ke Design	124
		8.7.1	The Barrel Yoke	124
		8.7.2	The Endcap Yoke	124
		8.7.3	Yoke assembly	124
	8.8	Dual S	blenoid Scenario	125
9				
9	Muo	n syster	n	135
9	Muo 9.1	n syster The µF	n RWell technology	135 135
9	Muo 9.1	n syster The μF 9.1.1	n RWell technology Prototypes performance	135 135 137
9	Muo 9.1	n syster The μF 9.1.1 9.1.2	n RWell technology Prototypes performance Large size μRWell detectors	135 135 137 138
9	Muo 9.1	n syster The μF 9.1.1 9.1.2 9.1.3	n RWell technology Prototypes performance Large size μRWell detectors μRWell performances in test beams	135 135 137 138 138
9	Muo 9.1	n syster The μF 9.1.1 9.1.2 9.1.3 9.1.4	n RWell technology Prototypes performance Large size µRWell detectors µRWell performances in test beams The double-resistive layer detector	135 135 137 138 138 138 143
9	Muo 9.1	n syster The μF 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5	n RWell technology Prototypes performance Large size µRWell detectors µRWell performances in test beams The double-resistive layer detector Applications for a Muon detection system for a CepC experiment	135 135 137 138 138 143 144
9	Muon 9.1 9.2	n syster The μF 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 New C	n RWell technology Prototypes performance Large size µRWell detectors µRWell performances in test beams The double-resistive layer detector Applications for a Muon detection system for a CepC experiment obliders for a New Frontier	135 135 137 138 138 143 144 144
9	Мио 9.1 9.2 Reac	n syster The μH 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 New Co dout eleged	n RWell technology Prototypes performance Large size µRWell detectors µRWell performances in test beams The double-resistive layer detector Applications for a Muon detection system for a CepC experiment colliders for a New Frontier	135 135 137 138 138 143 144 144 144
9	Мион 9.1 9.2 Reac 10.1	n syster The μH 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 New C dout electronic for the system of the s	n RWell technology Prototypes performance Large size µRWell detectors µRWell performances in test beams The double-resistive layer detector Applications for a Muon detection system for a CepC experiment olliders for a New Frontier ctronics and data acquisition olliders for a New Frontier	135 135 137 138 138 143 144 144 147 148
9 10 11	 Мион 9.1 9.2 React 10.1 СЕРО 	n syster The μH 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 New C dout elect New C C intera	n RWell technology Prototypes performance Large size µRWell detectors µRWell performances in test beams The double-resistive layer detector Applications for a Muon detection system for a CepC experiment olliders for a New Frontier ctronics and data acquisition olliders for a New Frontier ction region and detector integration	 135 135 137 138 138 143 144 144 144 147 148 149
9 10 11	 Muon 9.1 9.2 React 10.1 CEP(1) 11.1 	n syster The μH 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 New C dout electronic for the formation of the format	n RWell technology Prototypes performance Large size µRWell detectors µRWell performances in test beams The double-resistive layer detector Applications for a Muon detection system for a CepC experiment olliders for a New Frontier Ctronics and data acquisition olliders for a New Frontier ction region and detector integration tion region layout	135 135 137 138 138 143 144 144 147 148 149
9 10 11	 Muon 9.1 9.2 React 10.1 CEP0 11.1 11.2 	n syster The μF 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 New C dout electronic for the formation of the format	n Well technology Prototypes performance Large size μRWell detectors μRWell performances in test beams The double-resistive layer detector Applications for a Muon detection system for a CepC experiment olliders for a New Frontier ctronics and data acquisition olliders for a New Frontier ction region and detector integration tion region layout ocusing magnets	135 135 137 138 138 143 144 144 147 148 149 149 150
9 10 11	 Muon 9.1 9.2 React 10.1 CEPP 11.1 11.2 11.3 	n syster The μ F 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 New C dout electronic final for Detector	n Well technology Prototypes performance Large size μRWell detectors μRWell performances in test beams The double-resistive layer detector Applications for a Muon detection system for a CepC experiment olliders for a New Frontier ctronics and data acquisition olliders for a New Frontier ction region and detector integration tion region layout ocusing magnets or backgrounds	135 135 137 138 138 143 144 144 144 147 148 149 150 150
9 10 11	 Muon 9.1 9.2 React 10.1 CEP0 11.1 11.2 11.3 	n syster The μH 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 New C dout electronic final for Detector 11.3.1	n Well technology Prototypes performance Large size µRWell detectors µRWell performances in test beams The double-resistive layer detector Applications for a Muon detection system for a CepC experiment olliders for a New Frontier Ctronics and data acquisition olliders for a New Frontier ction region and detector integration tion region layout ocusing magnets or backgrounds Beam-beam interactions	135 135 137 138 138 143 144 144 144 147 148 149 149 150 150 150 151
9 10 11	 Muon 9.1 9.2 React 10.1 CEP0 11.1 11.2 11.3 	n syster The μH 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 New C dout electronic final for Detector 11.3.1 11.3.2	n Well technology Prototypes performance Large size µRWell detectors µRWell performances in test beams The double-resistive layer detector Applications for a Muon detection system for a CepC experiment olliders for a New Frontier Ctronics and data acquisition olliders for a New Frontier Ction region and detector integration tion region layout ocusing magnets or backgrounds Beam-beam interactions Synchrotron radiation	135 135 137 138 138 143 144 144 147 148 149 150 150 151 151
9 10 11	 Muon 9.1 9.2 React 10.1 CEP(11,1) 11.2 11.3 	n syster The μF 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 New C dout electronic final for Detectronic final for final for final for final for Detectronic final for final fo	n CWell technology Prototypes performance Large size μRWell detectors μRWell performances in test beams The double-resistive layer detector Applications for a Muon detection system for a CepC experiment olliders for a New Frontier Ctronics and data acquisition olliders for a New Frontier ction region and detector integration tion region layout cusing magnets or backgrounds Beam-beam interactions Synchrotron radiation Beam-gas interactions	135 135 137 138 138 143 144 144 147 148 149 149 150 150 150 151 151
9 10 11	Muon 9.1 9.2 Reac 10.1 CEP0 11.1 11.2 11.3	n syster The μt 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 New C dout electronic for the system of the s	n Well technology Prototypes performance Large size µRWell detectors µRWell performances in test beams The double-resistive layer detector Applications for a Muon detection system for a CepC experiment olliders for a New Frontier Ctronics and data acquisition olliders for a New Frontier Ction region and detector integration tion region layout ocusing magnets or backgrounds Beam-beam interactions Synchrotron radiation Beam-gas interactions osity instrumentation	135 135 137 138 138 143 144 144 144 147 148 149 149 150 150 151 151 151 151
9	 Muon 9.1 9.2 React 10.1 CEP0 11.1 11.2 11.3 11.4 	n syster The μH 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 New C dout electronic for the formation of the format	n Well technology Prototypes performance Large size µRWell detectors µRWell performances in test beams The double-resistive layer detector Applications for a Muon detection system for a CepC experiment olliders for a New Frontier Ctronics and data acquisition olliders for a New Frontier Ction region and detector integration tion region layout ocusing magnets or backgrounds Beam-beam interactions Synchrotron radiation Beam-gas interactions osity instrumentation Systematic effects in the luminosity measurement	135 135 137 138 138 143 144 144 144 147 148 149 149 150 150 151 151 151 151 151 152
9	 Muon 9.1 9.2 React 10.1 CEP0 11.1 11.2 11.3 11.4 	n syster The μH 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 New C dout electronic final for Detector 11.3.1 11.3.2 11.3.3 Luminor 11.4.1 11.4.2	n Well technology Prototypes performance Large size µRWell detectors µRWell performances in test beams The double-resistive layer detector Applications for a Muon detection system for a CepC experiment olliders for a New Frontier Ctronics and data acquisition olliders for a New Frontier Ction region and detector integration tion region layout ocusing magnets or backgrounds Beam-beam interactions Synchrotron radiation Beam-gas interactions osity instrumentation Systematic effects in the luminosity measurement Luminosity detector options	135 135 137 138 138 143 144 144 144 147 148 149 150 150 151 151 151 151 151 152 154

viii CONTENTS

		11.4.4 Boost by beam-crossing to Bhabha electrons	158			
		11.4.5 Shower leakage of LumiCal to tracking volume	158			
	11.5	Detector integration	161			
12	Phys	ics performance	163			
	12.1	Introduction	163			
		12.1.1 Higgs discovery and Physics at Post-Higgs era	163			
		12.1.2 The physics requirement and detector design at the CEPC	165			
	12.2	Simulation Geometry & Samples	166			
	12.3	Arbor Algorithm & Strategy to the object reconstruction	167			
	12.4	Leptons	170			
	12.5	Kaon Identification	171			
	12.6	Photons	172			
	12.7	Taus	173			
	12.8	Jet-clustering	176			
	12.9	Jet flavor tagging	180			
		12.9.1 Base line	180			
		12.9.2 Deep learning	180			
		12.9.3 Gluon identification	180			
		12.9.4 Geometry scan & recommendations	180			
13	Futrue plans and R&D prospects					
	13.1	New Colliders for a New Frontier	184			