Introductory remarks

João Guimarães da Costa

December 06, 2017

Institute of High Energy Physics Chinese Academy of Sciences

News

- CDR timescale agreed upon at Steering group meeting on Nov 29:
 - Similar to what we discussed at the last meeting:
 - Start harmonization of text and introduction chapters now
 - Complete draft of each chapter by Jan 2017
 - Editing and internal review: Feb-Mar 2017
 - International review: April 2018
 - Implementation of suggestions: May 2018
 - Public release: May-June 2018
- MOST 2 pre-application submitted to CAS/MOST last week
 - Total budget request: 45 MRMB
 - Tasks: accelerator, hadronic calorimeter; pixel detector

Extra Slides

中国科学院高能物理研究所

International Advisory Committee Meeting

- The fourth CEPC IAC meeting: November 8-9
 - <u>http://indico.ihep.ac.cn/event/7390/</u> <u>overview</u>
 - Some overlap with the workshop on November 8
 - Activities to start at 5 pm
 - CEPC CDR Status report to be presented on November 8
 - Main goal of this meeting is the discussion on how to broaden the internationalization of the CEPC project

International Advisory Committee

Young-Kee Kim, U. Chicago (Chair) Barry Barish, Caltech Hesheng Chen, IHEP Michael Davier, LAL Brian Foster, Oxford Rohini Godbole, CHEP, Indian Institute of Science David Gross, UC Santa Barbara George Hou, Taiwan U. Peter Jenni, CERN Eugene Levichev, BINP Lucie Linssen, CERN Joe Lykken, Fermilab Luciano Maiani, Sapienza University of Rome Michelangelo Mangano, CERN Hitoshi Murayama, UC Berkeley/IPMU Katsunobu Oide, KEK Robert Palmer, BNL John Seeman, SLAC Ian Shipsey, Oxford Steinar Stapnes, CERN Geoffrey Taylor, U. Melbourne Henry Tye, IAS, HKUST Yifang Wang, IHEP Harry Weerts, ANL

中国科学院高能物理研究所

Last Week's Version

8.2

8.2.1

8.2.2

The Magnetic Field Requirements and Design

Main parameters

Magnetic field design

C	DNT	FENTS			4.8	4.7.2 Future R&D Summary
	_			5	The	silicon tracker
					5.1	Baseline design
					5.2	Sensor technologies
					5.3	Front-End electronics
					5.4	Powering and cooling
					5.5	Mechanics and integration
					5.6	tracking performance
Ack	nowled	gments	iii		5.7	Critial R&D
1	Intro	oduction	1	6	Trac	cking system
	1.1	The CEPC-SPPC Study Group and the CDR	1		6.1	TPC tracker detector
	1.2	The Case for the CEPC-SppC in China	1			6.1.1 Baseline design and mechanics
	1.2	The Science in the CDR	1			6.1.2 Simulation and estimation for the key issues
	1.5	The Accelerator and the Experiment	1		60	6.1.3 feasibility study of the TPC detector module and calibration system
	1.4	The Accelerator and the Experiment	1		0.2	6.2.1 Full silicon tracker layout
2	0	ruious of the Physics Coop for CEPC SppC	2			6.2.2 Toy simulation
2	Over	The of the Physics Case for CEPC-SppC	3			6.2.3 Detector simulation and reconstruction
	2.1	New Colliders for a New Frontier	4			6.2.4 Tracking performance
						6.2.5 Conclusion
3	Expe	erimental conditions and detector requirements	5		6.3	Drift chamber tracker detector
	3.1	New Colliders for a New Frontier	6	7	Cal	orimetry
	Mant		-		7.1	Introduction to calorimeters
4	verte	ex	7		7.2	Electromagnetic Calorimeter for Particle Flow Approach
	4.1	Performance Requirements and Detector Challenges	7			7.2.1 Silicon-Tungsten Sandwich Electromagnetic Calorimeter
	4.2	Baseline design	8			7.2.2 Scintillator-Tungsten Sandwich Electromagnetic Calorimeter
	4.3	Detector performance studies	8		7.3	Hadronic Calorimeter for Particle Flow Approach
		4.3.1 Performance of the Baseline Configurations	9			7.3.1 Introduction
		4.3.2 Material Budget	9			 1.3.2 Semi-Digital Hadronic Calorimeter (SDHCAL) 7.3.2 Analog Hadronic Calorimeter based on Scintillator and SiDM
		4.3.3 Dependence on Single-Point Resolution	9		74	Dual-readout Calorimetry
		4.3.4 Distance to IP	11		7.4	7.4.1 Introduction
	1 1	4.J.4 Distance to IF Paam induced Packground in the Vertex Detector	11			7.4.2 Dual-Readout Calorimetry
	4.4	Beam-muuceu Background in the vertex Detector	11			7.4.3 Layout and Mechanics
	4.5	Sensor Technology Options	11			7.4.4 DREAM/RD52 Prototype Studies
	4.6	Mechanics and Integration	13			7.4.5 Sensors and Readout Electronics
	4.7	Critical R&D	15			7.4.6 Monte Carlo Simulations
		4.7.1 Current R&D activities	15			7.4.7 Final Remarks
			v	8	Det	ector magnet system
					8.1	General Design Considerations

15 16

25 25 26

29

45 45

47

48

54 54 54

55

95 95

96

96

96

CONTENTS **vii**

		8.2.3	Coil mechanical analysis	97
		8.2.4	Preliminary quench analysis	102
	8.3	HTS/L	TS Superconductor Options	105
		8.3.1	HTS plan background	105
		8.3.2	The latest development of high temperature superconducting cable	109
		8.3.3	HTS magnetic design	111
		8.3.4	Future work of HTS plan	112
	8.4	Soleno	id Coil Design	114
		8.4.1	Solenoid Coil Structure	114
		8.4.2	R&D of Superconducting Conductor	114
		8.4.3	Coil fabrication and assembly	116
	8.5	Magne	t Cryogenics Design	116
		8.5.1	Preliminary Simulation of the Thermosyphon Circuit	116
		8.5.2	Preliminary results for 10:1 scale model	118
		8.5.3	Experiment of a small-sized He thermosiphon	119
		8.5.4	Cryogenic Plant Design	120
	8.6	Quench	h Protection and Power supply	123
		8.6.1	power supply	123
		8.6.2	control and safety systems	123
	8.7	Iron Yo	oke Design	124
		8.7.1	The Barrel Yoke	124
		8.7.2	The Endcap Yoke	124
	0.0	8.7.3	Yoke assembly	124
	8.8	Dual S	olenoid Scenario	125
9	Muo	n syster	n	135
	9.1	The μ F	RWell technology	135
		, 9.1.1	Prototypes performance	137
		9.1.2	Large size μ RWell detectors	138
		9.1.3	μ RWell performances in test beams	138
		9.1.4	The double-resistive layer detector	143
		9.1.5	Applications for a Muon detection system for a CepC experiment	144
	9.2	New C	olliders for a New Frontier	144
10	Read	dout ele	ctronics and data acquisition	147
	10.1	New C	olliders for a New Frontier	148
11	CEP	C intera	ction region and detector integration	149
	11.1	Interac	tion region layout	149
	11.2	Final fo	ocusing magnets	150
	11.3	Detecto	or backgrounds	150
		11.3.1	Beam-beam interactions	151
		11.3.2	Synchrotron radiation	151
		11.3.3	Beam-gas interactions	151
	11.4	Lumino	osity instrumentation	151
		11.4.1	Systematic effects in the luminosity measurement	152
			- · · · · · · · · · · · · · · · · · · ·	
		11.4.2	Luminosity detector options	154
		11.4.2 11.4.3	Luminosity detector options Tracking of Bhabha electrons to 10^{-4} precision	154 155

VIII CONTENTS

		11.4.4 Boost by beam-crossing to Bhabha electrons	158					
		11.4.5 Shower leakage of LumiCal to tracking volume	158					
	11.5	Detector integration	161					
12	Phys	sics performance						
	12.1	Introduction	163					
		12.1.1 Higgs discovery and Physics at Post-Higgs era	163					
		12.1.2 The physics requirement and detector design at the CEPC	165					
	12.2	Simulation Geometry & Samples	166					
	12.3	Arbor Algorithm & Strategy to the object reconstruction	167					
	12.4	Leptons	170					
	12.5	Kaon Identification	171					
	12.6	Photons	172					
	12.7	Taus	173					
	12.8	Jet-clustering	176					
	12.9	Jet flavor tagging	180					
		12.9.1 Base line	180					
		12.9.2 Deep learning	180					
		12.9.3 Gluon identification	180					
		12.9.4 Geometry scan & recommendations	180					
13	Futrue plans and R&D prospects							
	13.1	New Colliders for a New Frontier	184					