Form Invariance, Topological Fluctuations and Mass Gap of Yang-Mills Theory

Speaker: Yachao Qian ${ }^{\dagger}$

(arXiv:1605.08425)

Authors: Yachao Qian and Jun Nian

December 19, 2017

[^0]
Outline

1. Classical Solution
2. 3 D
3. 4 D
4. Topological Fluctuations
5. Yang-Mills Mass Gap Problem

How to solve Yang-Mills equation?

For $S U(N)$ gauge field in Euclidean space, can we find a systematic way to solve the Yang-Mills equation

$$
\begin{equation*}
D_{\mu} F_{\mu \nu}=0 \quad ? \tag{1}
\end{equation*}
$$

How to solve Yang-Mills equation?

For $S U(N)$ gauge field in Euclidean space, can we find a systematic way to solve the Yang-Mills equation

$$
\begin{equation*}
D_{\mu} F_{\mu \nu}=0 \quad ? \tag{1}
\end{equation*}
$$

The general case is difficult. Let's further assume the gauge field $A_{\mu}(x)$ is spherically symmetric, which also guarantees that $A_{\mu}(x)$ must be finite except for the boundaries - origin $\left(x^{2}=0\right)$ and infinity $\left(x^{2}=\infty\right)$.

How to solve Yang-Mills equation?

For $S U(N)$ gauge field in Euclidean space, can we find a systematic way to solve the Yang-Mills equation

$$
\begin{equation*}
D_{\mu} F_{\mu \nu}=0 \quad ? \tag{1}
\end{equation*}
$$

The general case is difficult. Let's further assume the gauge field $A_{\mu}(x)$ is spherically symmetric, which also guarantees that $A_{\mu}(x)$ must be finite except for the boundaries - origin $\left(x^{2}=0\right)$ and infinity $\left(x^{2}=\infty\right)$.

Can we solve it?

Form invariance condition

One of Wightman's axioms on QFT:

$$
\left(O^{-1}\right)_{\mu}^{\nu} A_{\nu}(O x)=V^{-1} A_{\mu}(x) V+V^{-1} \partial_{\mu} V
$$

A_{μ} : a gauge field
O : a Lorentz transformation
V : a gauge transformation
For the flat spacetime, i.e., O has rigid parameters:
Theorem

$$
\left(O^{-1}\right)_{\mu}^{\nu} A_{\nu}(O x)=V^{-1} A_{\mu}(x) V
$$

where V has only rigid parameters.
C. H. Gu, Phys. Rept. 80, 251 (1981).
$S U(2)$ gauge field in the 3-dimensional Euclidean space

$$
\begin{equation*}
A_{\mu}=p(\tau)\left(U^{-1} \partial_{\mu} U\right) \tag{2}
\end{equation*}
$$

where $\tau \equiv x_{\mu} x^{\mu}$, and U is an $S U(2)$ group element.

$$
\begin{align*}
U & =\exp \left[T_{a} \psi^{a}(x)\right]=\exp \left[T_{a} \frac{\psi^{a}(x)}{|\psi(x)|}|\psi(x)|\right]=\exp \left[T_{a} \omega^{a}{ }_{\mu} \hat{n}^{\mu}|\psi(x)|\right] \\
& =\exp \left[T_{a} \omega^{a}{ }_{\mu} \hat{n}^{\mu} \theta(\tau)\right] \tag{3}
\end{align*}
$$

with

$$
\begin{equation*}
\hat{n}^{\mu} \equiv x^{\mu} /|x|, \quad \theta(\tau) \equiv|\psi(x)|, \quad T^{a}=\sigma^{a} / 2 i \tag{4}
\end{equation*}
$$

We have defined a matrix $\omega^{a}{ }_{\mu}$ to connect the two unit vectors \hat{n}^{μ} and $\psi^{a}(x) /|\psi(x)|$ in different spaces. The Ansatz (2) must satisfy the form invariance condition:

$$
\left(O^{-1}\right)_{\mu}^{\nu} A_{\nu}(O x)=V^{-1} A_{\mu}(x) V,
$$

where O is a constant $S O(3)$ group element, and V is a constant $S U(2)$ group element.

Form invariance

In paper we proved that ω is restricted to be a constant $O(3)$ group element. If we assume that $\operatorname{det} \omega=1$, the Ansatz (2) becomes

$$
\begin{equation*}
A_{\mu}=p(\tau)\left(U^{-1} \partial_{\mu} U\right), \quad U=\exp \left[T_{a} \omega^{a}{ }_{\mu} \hat{n}^{\mu} \theta(\tau)\right], \tag{5}
\end{equation*}
$$

with a constant $S O(3)$ group element ω. With a proper choice of the generators T_{a}, we can write the matrix ω as

$$
\omega=\left(\begin{array}{lll}
1 & 0 & 0 \tag{6}\\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

and therefore

$$
\begin{equation*}
U=\exp \left[T_{i} \hat{n}^{i} \theta(\tau)\right] \tag{7}
\end{equation*}
$$

Boundary and topological charge

For the 3-dimensional Euclidean space, the appropriate topological term is the Chern-Simons term:

$$
\begin{equation*}
S_{C S}=\frac{i k}{4 \pi} \int d^{3} x \operatorname{Tr}\left(A \wedge d A+\frac{2}{3} A \wedge A \wedge A\right) \tag{8}
\end{equation*}
$$

In general, $S_{C S}$ takes values in $\mathbb{R} / 2 \pi \mathbb{Z}$. If we require that $S_{C S}$ takes values in $2 \pi \mathbb{Z}$, it will not affect the quantum Yang-Mills theory in the path integral.

$$
\begin{equation*}
S_{C S}=\frac{i k}{4 \pi} \int d^{3} x\left(\frac{2}{3} p^{3}-p^{2}\right) \operatorname{Tr}\left(U^{-1} d U\right) \wedge\left(U^{-1} d U\right) \wedge\left(U^{-1} d U\right) \tag{9}
\end{equation*}
$$

which is essentially a Wess-Zumino term. We can define

$$
\begin{equation*}
S_{C S}=2 \pi i k B, \tag{10}
\end{equation*}
$$

where B is the winding number.

Boundary and topological charge

$$
B=\frac{3}{2 \pi^{2}} \sum_{\beta}\left(\frac{2}{3} p_{\beta}^{3}-p_{\beta}^{2}\right)\left(\theta_{\beta}-\frac{1}{2} \sin 2 \theta_{\beta}\right) \int d S_{\beta} \hat{n} \cdot\left(\partial_{1} \hat{n} \times \partial_{2} \hat{n}\right),
$$

where β denotes the singular points, for instance $\tau=0$ and $\tau=\infty$ in our case, and

$$
\begin{equation*}
\frac{1}{4 \pi} \int d S \hat{n} \cdot\left(\partial_{1} \hat{n} \times \partial_{2} \hat{n}\right)= \pm 1 \tag{11}
\end{equation*}
$$

where the contributions from $\tau=0$ and $\tau=\infty$ have an opposite sign due to the boundary orientation. Since B should also be an integer, the boundary values of p and θ at the singular points will be constrained.

Boundary and topological charge

We can list the possible boundary conditions

Winding number B	$\left.p\right\|_{\tau=0}$	$\left.p\right\|_{\tau=\infty}$	$\left.\theta\right\|_{\tau=0}$	$\left.\theta\right\|_{\tau=\infty}$
0	0	0	π	π
0	$1 / 2$	$1 / 2$	π	π
0	1	1	π	π

In sum, we have the ansatz

$$
\begin{equation*}
A_{\mu}=p(\tau)\left(U^{-1} \partial_{\mu} U\right), \quad U=\exp \left[T_{i} \hat{n}^{i} \theta(\tau)\right] \tag{12}
\end{equation*}
$$

with the possible boundaries listed above.

Classical solutions

One can easily solve the Yang-Mills equation

$$
\begin{equation*}
D_{\mu} F_{\mu \nu}=0 \tag{13}
\end{equation*}
$$

where we obtain $\theta=\pi$ and

Figure: Spherically symmetric solutions to 3D Yang-Mills equation.
$S U(2)$ gauge field in the 4-dimensional Euclidean space

$$
\begin{equation*}
A_{\mu}=p\left(\tau, x_{4}\right)\left(U^{-1} \partial_{\mu} U\right), \quad U=\exp \left[T_{i} \hat{n}^{i} \theta\left(\tau, x_{4}\right)\right] \tag{14}
\end{equation*}
$$

where $\tau \equiv x^{\mu} x_{\mu}$, and μ runs from 1 to 4 , while i runs from 1 to 3 . The functions $p\left(\tau, x_{4}\right)$ and $\theta\left(\tau, x_{4}\right)$ depend on both τ and x_{4}, while \hat{n}^{i} is a unit vector depending only on x_{1}, x_{2} and x_{3} :

$$
\begin{equation*}
\hat{n}^{i} \equiv \frac{x^{i}}{|x|}, \tag{15}
\end{equation*}
$$

where $|x|^{2} \equiv \sum_{i=1}^{3} x^{i} x_{i}$. The form invariance condition

$$
\left(\Lambda^{-1}\right)_{\mu}^{\nu} A_{\nu}(\Lambda x)=V^{-1} A_{\mu}(x) V
$$

where Λ is an $S O(4)$ Lorentz transformation and V is an $S U(2)$ gauge transformation, both of which have parameters independent of x.

Fix θ

Let us consider a special case $\mu=4$

$$
\begin{aligned}
& \left(\Lambda^{-1} A(\Lambda x)\right)_{\mu=4}^{a} T_{a} \\
= & p^{\prime}\left[\hat{n}_{a}^{\prime}\left(\partial_{4} \theta^{\prime}\right)+\sin \theta^{\prime}\left(\partial_{4} \hat{n}_{a}^{\prime}\right)\right] T_{a}-p^{\prime} T_{a} \epsilon_{a b c}\left(1-\cos \theta^{\prime}\right) \frac{x^{b}}{|\Lambda x|} \frac{\frac{\varphi_{c} \sin |\varphi|}{|\varphi|}}{|\Lambda x|} .
\end{aligned}
$$

After a gauge transformation, it has the expression

$$
\begin{equation*}
V^{-1} A_{\mu=4}^{a} T_{a} V=p\left[\frac{\psi_{a} \psi_{b}}{|\psi|^{2}}(1-\cos |\psi|)+\delta_{a b} \cos |\psi|-\epsilon_{a b c} \sin |\psi| \frac{\psi_{c}}{|\psi|}\right] T_{b} \hat{n}_{a} \partial_{4} \theta \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
V=\exp \left(\psi^{a} T_{a}\right), \tag{17}
\end{equation*}
$$

p and θ

By comparing the terms $\sim \epsilon_{a b c}$, one obtains

$$
\begin{equation*}
\psi_{c}= \pm \varphi_{c}, \quad-\left(1-\cos \theta^{\prime}\right) \frac{p^{\prime}}{|\Lambda x|^{2}}= \pm \frac{p}{|x|} \partial_{4} \theta . \tag{18}
\end{equation*}
$$

For the special case $\Lambda=1$

$$
\begin{align*}
& -(1-\cos \theta) \frac{1}{|x|^{2}}= \pm \frac{1}{|x|} \partial_{4} \theta \\
\Rightarrow & \frac{1}{|x|}= \pm \partial_{4} \cot \left(\frac{\theta}{2}\right) \\
\Rightarrow & \cot \left(\frac{\theta}{2}\right)= \pm \frac{x_{4}}{|x|} \pm f(|x|), \tag{19}
\end{align*}
$$

where f is an arbitrary smooth function. In the paper, we proved that $f=0$. Thus,

$$
\begin{equation*}
\cot \left(\frac{\theta}{2}\right)= \pm \frac{x_{4}}{|x|} \quad \text { and } \quad p=p(\tau) \tag{20}
\end{equation*}
$$

Ansatz

We choose $\cot (\theta / 2)=x_{4} /|x|$ and the form invariant Ansatz A_{μ} is given by

$$
\begin{align*}
A_{\mu} & =p(\tau)\left[\frac{x_{4}-2\left(T^{a} x_{a}\right)}{\sqrt{\tau}}\right] \partial_{\mu}\left[\frac{x_{4}+2\left(T^{b} x_{b}\right)}{\sqrt{\tau}}\right] \\
& =2 \frac{p(\tau)}{\tau} \eta_{a \mu \nu} x_{\nu} T^{a} \tag{21}
\end{align*}
$$

where $\eta_{a \mu \nu}$ is the 't Hooft symbol

$$
\begin{align*}
& \eta_{i \mu \nu}=-\operatorname{tr}\left(M_{i} M_{\mu \nu}\right)=-\left(M_{i}\right)_{m n}\left(M_{\mu \nu}\right)_{n m}=2\left(M_{i}\right)_{\mu \nu}=\left(\epsilon_{i \mu \nu 4}+\delta_{i \mu} \delta_{\nu 4}-\delta_{i \nu} \delta_{\mu 4}\right) \\
& \bar{\eta}_{i \mu \nu}=-\operatorname{tr}\left(N_{i} M_{\mu \nu}\right)=-\left(N_{i}\right)_{m n}\left(M_{\mu \nu}\right)_{n m}=2\left(N_{i}\right)_{\mu \nu}=\left(\epsilon_{i \mu \nu 4}-\delta_{i \mu} \delta_{\nu 4}+\delta_{i \nu} \delta_{\mu 4}\right) \tag{22}
\end{align*}
$$

Topological charge and boundary conditions

For the 4D Yang-Mills theory

$$
\begin{equation*}
k=-\frac{1}{16 \pi^{2}} \int d^{4} x \operatorname{Tr}\left[F^{\mu \nu}\left(* F_{\mu \nu}\right)\right] \tag{23}
\end{equation*}
$$

is an integer-valued quantity.
Hence, the integral becomes a surface integral, and only boundaries contribute to it.

$$
\begin{equation*}
k=-\frac{1}{8 \pi^{2}} \oint_{S_{\beta}^{3}} d \Omega_{\mu} \epsilon^{\mu \nu \rho \sigma}\left(\frac{2}{3} p^{3}-p^{2}\right) \operatorname{Tr}\left[\left(U^{-1} \partial_{\nu} U\right)\left(U^{-1} \partial_{\rho} U\right)\left(U^{-1} \partial_{\sigma} U\right)\right], \tag{24}
\end{equation*}
$$

where the surface S_{β}^{3} surrounds the singular point β, and the radius of the sphere can be taken to be very small. Hence, the factor $\frac{2}{3} p^{3}-p^{2}$ has a constant value $\left(\frac{2}{3} p^{3}-p^{2}\right)_{\beta}$ in the small sphere and can be brought outside the integration.

Topological charge and boundary conditions

We use x^{μ} and $\xi^{i}(x)(i=1,2,3)$ to denote the spacetime coordinates and the group coordinates respectively. Using
$\operatorname{Tr}\left[\left(U^{-1} \partial_{\nu} U\right)\left(U^{-1} \partial_{\rho} U\right)\left(U^{-1} \partial_{\sigma} U\right)\right]=\frac{\partial \xi^{i}}{\partial x^{\nu}} \frac{\partial \xi^{j}}{\partial x^{\rho}} \frac{\partial \xi^{k}}{\partial x^{\sigma}} \operatorname{Tr}\left[\left(U^{-1} \partial_{i} U\right)\left(U^{-1} \partial_{j} U\right)\left(U^{-1} \partial_{k} U\right)\right]$
obtain

$$
\begin{equation*}
d k=\frac{3}{16 \pi^{2}}\left(\frac{2}{3} p^{3}-p^{2}\right)_{\beta}(\operatorname{det} e) d^{3} \xi \tag{25}
\end{equation*}
$$

where

$$
\begin{equation*}
U^{-1} \partial_{i} U=e_{i}^{a}(\xi) T_{a}, \tag{27}
\end{equation*}
$$

and ($\operatorname{det} e) d^{3} \xi$ is the Haar measure on the group manifold. For example

$$
\begin{equation*}
\frac{1}{16 \pi^{2}} \int_{S_{|x| \rightarrow \infty}^{3}}(\operatorname{det} e) d^{3} \xi=1 \tag{28}
\end{equation*}
$$

Ansatz

In sum, we have

$$
\begin{equation*}
A_{\mu}=2 \frac{p(\tau)}{\tau} \eta_{a \mu \nu} x_{\nu} T^{a} \tag{29}
\end{equation*}
$$

with the possible boundary conditions listed as

Winding Number k	$\left.p\right\|_{\tau=0}$	$\left.p\right\|_{\tau=\infty}$
0	0	0
0	$1 / 2$	$1 / 2$
0	1	1
1	0	1
-1	1	0
\cdots	\cdots	\cdots

Table: Boundary conditions in 4D.

Classical solutions

Obtain the solution

- $p=1 / 2$: Meron
- $p=\frac{\tau}{\tau+c}$: Instanton
- $p=\frac{c}{\tau+c}$: Anti-Instanton
- $p=1$ and $p=0$: Pure gauge and zero

Figure: Spherically symmetric solutions to 4D Yang-Mills equation.

Classical solutions

If we adopt a new coordinate introduced by the conformal transformation

$$
\begin{equation*}
\zeta=\frac{1}{2} \frac{\tau-c}{\tau+c}, \tag{30}
\end{equation*}
$$

then all the classical solutions can be plotted in the new coordinate

Figure: Spherically symmetric solutions to 4D Yang-Mills equation.

Discussion ...

$$
\begin{equation*}
A_{\mu}^{a}=c_{1}(\tau) \eta_{a \mu \nu} x_{\nu}+c_{2}(\tau) \bar{\eta}_{a \mu \nu} x_{\nu} \tag{31}
\end{equation*}
$$

Discussion ...

$$
\begin{equation*}
A_{\mu}^{a}=c_{1}(\tau) \eta_{a \mu \nu} x_{\nu}+c_{2}(\tau) \bar{\eta}_{a \mu \nu} x_{\nu} \tag{31}
\end{equation*}
$$

- General case?
- Subspace and sub-gauge-group space

$$
\left(\Lambda^{-1}\right)_{\mu}{ }^{\nu} A_{\nu}(\Lambda x)=V^{-1} A_{\mu}(x) V
$$

- Lowest winding numbers

Topological Fluctuations

Take 3D Wu-Yang monopole solution as an example:

Topological modes:

Form invariance:

$$
\left(O^{-1}\right)_{\mu}^{\nu} A_{\nu}^{\mathrm{top}}(O x)=V^{-1} A_{\mu}^{\mathrm{top}}(x) V
$$

Any configuration:

$$
A_{\mu}^{\mathrm{top}}\left(p_{0}+\widetilde{p}, \theta_{0}+\widetilde{\theta}\right)
$$

$\widetilde{p}, \widetilde{\theta}$: topological fluctuations
Effective lagrangian:

$$
\begin{equation*}
\left.\frac{1}{4} F_{\mu \nu}^{a} F_{\mu \nu}^{a}\right|_{\text {top }}=\left.\frac{1}{4} F_{\mu \nu}^{a} F_{\mu \nu}^{a}\right|_{\mathrm{cl}}+4\left|\partial_{\tau} \widetilde{\psi}\right|^{2}-\frac{1}{\tau^{2}}|\widetilde{\psi}|^{2}+\frac{1}{2 \tau^{2}}|\widetilde{\psi}|^{4}, \tag{32}
\end{equation*}
$$

Topological modes:

4D:

$$
A_{\mu}^{\mathrm{top}}\left(p_{0}+\widetilde{p}\right)
$$

Effective lagrangian:

$$
\begin{equation*}
\left.\frac{1}{4} F_{\mu \nu}^{a} F_{\mu \nu}^{a}\right|_{\mathrm{top}}=\left.\frac{1}{4} F_{\mu \nu}^{a} F_{\mu \nu}^{a}\right|_{\mathrm{cl}}+24\left[\left(\partial_{\tau} \widetilde{\phi}\right)^{2}-\frac{1}{2 \tau^{2}}(\widetilde{\phi})^{2}+\frac{1}{\tau^{2}}(\widetilde{\phi})^{4}\right] \tag{33}
\end{equation*}
$$

Two problems?

Take 3D for example:

$$
\begin{equation*}
\left.\frac{1}{4} F_{\mu \nu}^{a} F_{\mu \nu}^{a}\right|_{\mathrm{top}}=\left.\frac{1}{4} F_{\mu \nu}^{a} F_{\mu \nu}^{a}\right|_{\mathrm{cl}}+\frac{1}{\tau}\left|\partial_{\mu} \widetilde{\psi}\right|^{2}-\frac{1}{\tau^{2}}|\widetilde{\psi}|^{2}+\frac{1}{2 \tau^{2}}|\widetilde{\psi}|^{4}, \tag{34}
\end{equation*}
$$

We encounter two problems:

- $1 / \tau \longrightarrow$ apparent divergent
- $\widetilde{\psi}=\widetilde{\psi}(\tau)$

Topology

Topological boundary condition:

$$
\begin{equation*}
\widetilde{\psi}(\tau=0) \longrightarrow 0, \quad \text { and } \quad \widetilde{\psi}(\tau=\infty) \longrightarrow 0 \tag{35}
\end{equation*}
$$

Because it's fluctuations

$$
\begin{align*}
& \tilde{\psi} \longrightarrow \quad \text { translational invariant for most of the space } \\
& \text { except } \tau=0 \text { and } \tau=\infty . \tag{36}
\end{align*}
$$

Full theory \& Effective theory

We would like to make the shift:

$$
\begin{equation*}
\widetilde{\psi}\left(\left(x-x_{0}\right)^{2}\right) \longrightarrow \widetilde{\psi}\left(x^{2}\right) . \tag{37}
\end{equation*}
$$

However, the topological fluctuations are constrained by the topological boundary conditions

$$
\begin{align*}
& \int d^{3} x\left(\frac{1}{\tau}\left|\partial_{\mu} \widetilde{\psi}\right|^{2}-\frac{1}{\tau^{2}}|\widetilde{\psi}|^{2}+\frac{1}{2 \tau^{2}}|\widetilde{\psi}|^{4}\right) \\
= & \left(\int_{\text {near } x_{0}} d^{3} x+\int_{\text {near } 0} d^{3} x+\int_{\text {else }} d^{3} x\right)\left(\frac{1}{\tau}\left|\partial_{\mu} \widetilde{\psi}\right|^{2}-\frac{1}{\tau^{2}}|\widetilde{\psi}|^{2}+\frac{1}{2 \tau^{2}}|\widetilde{\psi}|^{4}\right), \tag{38}
\end{align*}
$$

Full theory \& Effective theory

In sum, we have

$$
\begin{align*}
& \frac{1}{g^{2}} \int d^{3} x\left(\frac{1}{\tau}\left|\partial_{\mu} \widetilde{\psi}\left(x-x_{0}\right)\right|^{2}-\frac{1}{\tau^{2}}\left|\widetilde{\psi}\left(x-x_{0}\right)\right|^{2}+\frac{1}{2 \tau^{2}}\left|\widetilde{\psi}\left(x-x_{0}\right)\right|^{4}\right) \\
= & \frac{1}{g^{2}} \int d^{3} x\left(\frac{1}{\tau}\left|\partial_{\mu} \widetilde{\psi}(x)\right|^{2}-\frac{1}{\tau^{2}}|\widetilde{\psi}(x)|^{2}+\frac{1}{2 \tau^{2}}|\widetilde{\psi}(x)|^{4}\right) \\
& -\frac{1}{g^{2}} \int_{\text {near } x_{0}} d^{3} x\left(\frac{1}{\tau}\left|\partial_{\mu} \widetilde{\psi}(x)\right|^{2}-\frac{1}{\tau^{2}}|\widetilde{\psi}(x)|^{2}+\frac{1}{2 \tau^{2}}|\widetilde{\psi}(x)|^{4}\right), \tag{39}
\end{align*}
$$

The left-hand side of this equation is finite. The second term on the right-hand side is divergent and gives the difference of the integral (39) near x_{0} before and after the shift (38), hence it can be viewed as a counter-term, that cancels the divergence of the first term on the right-hand side.

Effective theory

$$
\begin{align*}
\langle S\rangle_{x_{0}} & =\frac{1}{g^{2}} \int \frac{d^{3} x_{0}}{V} \int d^{3} x\left[\frac{1}{\tau}\left|\partial_{\mu} \widetilde{\psi}(\tau)\right|^{2}+\frac{1}{2 \tau^{2}}\left(|1+\widetilde{\psi}(\tau)|^{2}-1\right)^{2}\right] \\
& =\frac{1}{g^{2}} \int \frac{d^{3} x_{0}}{V} \int d^{3} x\left[\frac{1}{\tau}\left|\partial_{\mu} \widetilde{\psi}(\tau)\right|^{2}+\frac{1}{2 \tau^{2}}\left(\widetilde{\psi}^{\dagger}(\tau)+\widetilde{\psi}(\tau)+|\widetilde{\psi}(\tau)|^{2}\right)^{2}\right] \\
& =\frac{1}{g^{2}} \int \frac{d^{3} x_{0}}{V} \int d^{3} x\left[\frac{1}{\tau}\left|\partial_{\mu} \widetilde{\psi}(\widetilde{\tau})\right|^{2}+\frac{1}{2 \tau^{2}}\left(\widetilde{\psi}^{\dagger}(\widetilde{\tau})+\widetilde{\psi}(\widetilde{\tau})+|\widetilde{\psi}(\widetilde{\tau})|^{2}\right)^{2}\right]+(\text { counter }) \\
& =\frac{1}{g^{2}} \int_{\ell_{\text {top }}^{2}}^{L_{\text {top }}^{2}} \frac{2 \pi \sqrt{\tau} d \tau}{V} \int d^{3} x\left[\frac{1}{\tau}\left|\partial_{\mu} \widetilde{\psi}(\widetilde{\tau})\right|^{2}+\frac{1}{2 \tau^{2}}\left(\widetilde{\psi}(\widetilde{\tau})+\widetilde{\psi}(\widetilde{\tau})+|\widetilde{\psi}(\widetilde{\tau})|^{2}\right)^{2}\right] \\
& \approx \frac{3 L_{\text {top }}}{g^{2} L^{3}} \int d^{3} x\left[\left|\partial_{|x|} \widetilde{\psi}(|x|)\right|^{2}+m_{3 D}^{2}\left(|1+\widetilde{\psi}(|x|)|^{2}-1\right)^{2}\right] \\
& =\frac{3 L_{\text {top }}}{g^{2} L^{3}} \int d^{3} x\left[\left|\partial_{|x|} \Psi(|x|)\right|^{2}+m_{3 D}^{2}\left(|\Psi(|x|)|^{2}-1\right)^{2}\right] \tag{40}
\end{align*}
$$

where

$$
\begin{equation*}
m_{3 D}^{2} \equiv \frac{1}{2 \ell_{\mathrm{top}} L_{\mathrm{top}}} \tag{41}
\end{equation*}
$$

Effective theory

$$
\begin{equation*}
\mathcal{L}_{\mathrm{eff}} \sim\left|\partial_{|x|} \Psi(|x|)\right|^{2}+m_{3 D}^{2}\left(|\Psi(|x|)|^{2}-1\right)^{2} \tag{42}
\end{equation*}
$$

Boundary condition:

$$
\begin{equation*}
|\Psi|(|x|=0)=|\Psi|(|x|=\infty)=1 \tag{43}
\end{equation*}
$$

EOM:

$$
\begin{equation*}
\partial_{|x|}^{2}|\Psi|+\frac{2}{|x|} \partial_{|x|}|\Psi|-2 m_{3 D}^{2}\left(|\Psi|^{2}-1\right)|\Psi|=0 \tag{44}
\end{equation*}
$$

Effective theory

For 4D:

$$
\begin{equation*}
\mathcal{L}_{\mathrm{eff}} \sim\left(\partial_{|x|} q(|x|)\right)^{2}+4 m_{4 D}^{2}\left(q^{2}(|x|)-\frac{1}{4}\right)^{2} \tag{45}
\end{equation*}
$$

where

$$
\begin{equation*}
m_{4 D}^{2} \equiv \frac{2 \log \left(L_{\mathrm{top}} / \ell_{\mathrm{top}}\right)}{L_{\mathrm{top}}^{2}} . \tag{46}
\end{equation*}
$$

Boundary condition:

$$
\begin{equation*}
q(|x|=0)=q(|x|=\infty)= \pm \frac{1}{2} \tag{47}
\end{equation*}
$$

EOM:

$$
2 \Delta q-16 m_{4 D}^{2} q\left(q^{2}-\frac{1}{4}\right)=0
$$

with

$$
\Delta q=\partial_{|x|}^{2} q+\frac{3}{|x|} \partial_{|x|} q
$$

Effective theory

In general for D-dimensions:

$$
\begin{gathered}
\mathcal{L}_{\mathrm{eff}} \sim\left(\partial_{|x|} u\right)^{2}+\frac{1}{2}\left(u^{2}-1\right)^{2} \\
\Delta u-\left(|u|^{2}-1\right) u=0 \\
\Delta u=\partial_{|x|}^{2} u+\frac{D-1}{|x|} \partial_{|x|} u \\
\lim _{|x| \rightarrow 0}|u(x)|=\lim _{|x| \rightarrow \infty}|u(x)|=1
\end{gathered}
$$

Yang-Mills Mass Gap Problem

Mass gap Δ : ('06 Jaffe, Witten)
The Hamiltonian H has no spectrum in the interval $(0, \Delta)$ for some $\Delta>0$.

The mass gap problem of Yang-Mills theory:
"Prove that for any compact simple gauge group G, a non-trivial quantum Yang-Mills theory exists on \mathbb{R}^{4} and has a mass gap $\Delta>0$."

Some Previous Attempts

- '77 Polyakov:
$(2+1)$ D Georgi-Glashow model has mass gap.
In 4D YM instanton background cannot provide mass gap.
- Varying instanton profile can give glueballs mass gap at classical level.
('84 Diakonov, Petrov)
- With some supersymmetries,
e.g. Seiberg-Witten theory.
- . .

Two-Point Correlation Function

Consider the operator:

$$
\epsilon \equiv \frac{1}{4} F_{\mu \nu}^{a} F_{\mu \nu}^{a}
$$

3D:

$$
\langle\epsilon(-\vec{d}) \epsilon(\vec{d})\rangle_{\text {Lowest State }} \approx 16 C_{1}^{4}\left(\frac{e^{-m_{3 D} d}}{d}\right)^{8}
$$

with

$$
m_{3 D}^{2} \equiv \frac{1}{2 \ell_{\mathrm{top}} L_{\mathrm{top}}}
$$

4D:

$$
\langle\epsilon(-\vec{d}) \epsilon(\vec{d})\rangle_{\text {Lowest State }} \approx \frac{36 C_{1}^{4} \pi^{2}}{m_{4 D}^{2} d^{2}}\left(\frac{e^{-m_{4 D} d}}{d}\right)^{8}
$$

with

$$
\begin{equation*}
m_{4 D}^{2} \equiv \frac{2 \log \left(L_{\mathrm{top}} / \ell_{\mathrm{top}}\right)}{L_{\mathrm{top}}^{2}} \tag{49}
\end{equation*}
$$

Nonlinear Schrödinger Equation

In general for D-dimensions:

$$
\begin{gathered}
\Delta u-\left(|u|^{2}-1\right) u=0 \\
\Delta u=\partial_{|x|}^{2} u+\frac{D-1}{|x|} \partial_{|x|} u \\
\lim _{|x| \rightarrow 0}|u(x)|=\lim _{|x| \rightarrow \infty}|u(x)|=1
\end{gathered}
$$

Mass Gap of YM in Our Approach

Use the mass gap of 3D, 4D NLS ('15 Bao, Ruan). $\langle S\rangle_{x_{0}}$: the effective action evaluated at the first excited state on the trivial vacuum background. Assume $L \approx L_{\text {top }}$.

- For the flat space $\mathbb{R}^{D}(D=3,4)$ with finite size:

$$
\langle S\rangle_{x_{0}} \propto \begin{cases}\frac{1}{g^{2}} \frac{1}{\sqrt{L_{\text {top }} \ell_{\text {top }}}}, & \text { for 3D ; } \\ \frac{1}{g^{2}} \log \left(\frac{L_{\text {top }}}{\ell_{\text {top }}}\right), & \text { for } 4 \mathrm{D} .\end{cases}
$$

- For the sphere $S^{D}(D=3,4)$ with a radius R :

$$
\langle S\rangle_{x_{0}} \propto \begin{cases}\frac{1}{g^{2} R}, & \text { for 3D ; } \\ \frac{1}{g^{2}} \log \left[\cot \left(\frac{\theta_{0}}{2}\right)\right], & \text { for 4D }\end{cases}
$$

θ_{0} : physical cutoff on θ

Exact Spetrum of 1D NLS - 1

Exact Spetrum of 1D NLS - 2

Discussion ...

- Mass gap = quantum effects
- Low-energy physics

What's also in our paper

What's also in our paper

Start from different cores to probe the configuration space:

$$
V=\left(V_{\text {sol }} \cup\left(V_{\text {top }} \backslash V_{\text {sol }}\right)\right) \oplus V_{\text {top }}^{\perp}
$$

Thankyou! ulw (a) (aventern

Back up

Convention

The Lie algebra $\mathfrak{s o}(4)$ has the generators given by

$$
\begin{equation*}
\left(M_{\mu \nu}\right)_{m n} \equiv \delta_{\mu m} \delta_{\nu n}-\delta_{\mu n} \delta_{\nu m}, \tag{50}
\end{equation*}
$$

satisfying

$$
\begin{equation*}
\left[M_{\mu \nu}, M_{\rho \sigma}\right]=\delta_{\nu \rho} M_{\mu \sigma}+\delta_{\mu \sigma} M_{\nu \rho}-\delta_{\mu \rho} M_{\nu \sigma}-\delta_{\nu \sigma} M_{\mu \rho} . \tag{51}
\end{equation*}
$$

Convention

Let us write down the generators in fundamental representations:

$$
\begin{align*}
& M_{23}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \equiv J_{1}, \quad M_{14}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 \\
0 & 0 & 0 \\
-1 & 0 & 0 \\
0
\end{array}\right) \equiv K_{1}, \\
& M_{31}=\left(\begin{array}{cccc}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \equiv J_{2}, \quad M_{24}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right) \equiv K_{2}, \\
& M_{12}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \equiv J_{3}, \quad M_{34}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right) \equiv K_{3} . \tag{52}
\end{align*}
$$

$$
\begin{equation*}
\left[J_{i}, J_{j}\right]=-\epsilon_{i j k} J_{k}, \quad\left[K_{i}, K_{j}\right]=-\epsilon_{i j k} J_{k}, \quad\left[K_{i}, J_{j}\right]=-\epsilon_{i j k} K_{k} \tag{53}
\end{equation*}
$$

Define

$$
\begin{equation*}
M_{i} \equiv \frac{1}{2}\left(J_{i}+K_{i}\right), \quad N_{i} \equiv \frac{1}{2}\left(J_{i}-K_{i}\right) . \tag{54}
\end{equation*}
$$

The (anti-)commutation relations are given by

$$
\begin{gather*}
{\left[M_{i}, M_{j}\right]=-\epsilon_{i j k} M_{k}, \quad\left[N_{i}, N_{j}\right]=-\epsilon_{i j k} N_{k}, \quad\left[M_{i}, N_{j}\right]=0,} \tag{55}\\
\left\{M_{i}, M_{j}\right\}=-\frac{1}{2} \delta_{i j}, \quad\left\{N_{i}, N_{j}\right\}=-\frac{1}{2} \delta_{i j} . \tag{56}
\end{gather*}
$$

Fix p and θ

A general Lorentz transformation generated by $M_{i 4}$ is given by

$$
\begin{aligned}
\Lambda_{\mu \nu} & =\left(e^{\varphi_{14} M_{14}+\varphi_{24} M_{24}+\varphi_{34} M_{34}}\right)_{\mu \nu} \\
& =\delta_{\mu \nu}+\frac{\varphi_{\mu}}{|\varphi|} \delta_{\nu 4} \sin |\varphi|-\frac{\varphi_{\nu}}{|\varphi|} \delta_{\mu 4} \sin |\varphi|-2 \frac{\varphi_{\mu} \varphi_{\nu}}{|\varphi|^{2}} \sin ^{2}\left(\frac{|\varphi|}{2}\right)-2 \delta_{\mu 4} \delta_{\nu 4} \sin ^{2}\left(\frac{|\varphi|}{2}\right),
\end{aligned}
$$

where $\varphi_{\mu} \equiv\left(\varphi_{i 4}, \varphi_{4}=0\right)$ and $|\varphi| \equiv \sqrt{\left(\varphi_{i 4}\right)^{2}}$.

$$
\begin{equation*}
\Lambda^{-1} A_{\mu}(\Lambda x)=p\left(\tau,(\Lambda x)_{4}\right) \exp \left[-T_{a} \hat{n}_{a}^{\prime} \theta\left(\tau,(\Lambda x)_{4}\right)\right] \frac{\partial}{\partial x^{\mu}} \exp \left[T_{b} \hat{n}_{b}^{\prime} \theta\left(\tau,(\Lambda x)_{4}\right)\right] \tag{57}
\end{equation*}
$$

where $\tau \equiv x^{\mu} x_{\mu}, \hat{n}_{i}^{\prime} \equiv \frac{(\Lambda x)_{i}}{|\Lambda x|}$ and $|\Lambda x| \equiv \sqrt{(\Lambda x)_{i}(\Lambda x)_{i}}$.

Digression: Antiferromagnet Model

$$
S[\vec{n}]=s \sum_{j=1}^{N}(-1)^{j} S_{W Z}[\vec{n}(j)]-\frac{J s^{2}}{2} \int_{0}^{T} d x_{0} \sum_{j=1}^{N}\left(\vec{n}\left(j, x_{0}\right)-\vec{n}\left(j+1, x_{0}\right)\right)^{2}
$$

split \vec{n} into slowly varying mode $\vec{m}(j)+$ rapidly varying mode $\vec{l}(j)$:

$$
\begin{gathered}
\vec{n}(j)=\vec{m}(j)+(-1)^{j} a_{0} \vec{l}(j) \\
\vec{n}^{2}=\vec{m}^{2}=1, \quad \vec{m} \cdot \vec{l}=0
\end{gathered}
$$

In the continuum limit:
$\mathcal{L}(\vec{m}, \vec{l})=-2 a_{0} J s^{2} \vec{l}^{2}+s \vec{l} \cdot\left(\vec{m} \times \partial_{0} \vec{m}\right)-\frac{a_{0} J s^{2}}{2}\left(\partial_{1} \vec{m}\right)^{2}+\frac{s}{2} \vec{m} \cdot\left(\partial_{0} \vec{m} \times \partial_{1} \vec{m}\right)$
Integrating out the rapidly varying mode \vec{l} :

$$
\mathcal{L}(\vec{m})=\frac{1}{2 g}\left(\frac{1}{v_{s}}\left(\partial_{0} \vec{m}\right)^{2}-v_{s}\left(\partial_{1} \vec{m}\right)^{2}\right)+\frac{\theta}{8 \pi} \epsilon_{\mu \nu} \vec{m} \cdot\left(\partial_{\mu} \vec{m} \times \partial_{\nu} \vec{m}\right)
$$

[^0]: ${ }^{\dagger}$ Yachao.Qian@alumni.stonybrook. edu

