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How to solve Yang-Mills equation?

For SU(N) gauge field in Euclidean space, can we find a systematic
way to solve the Yang-Mills equation
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The general case is difficult. Let's further assume the gauge field A, (x)
is spherically symmetric, which also guarantees that A, (z) must be
finite except for the boundaries — origin (22 = 0) and

infinity (2 = 00).
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The general case is difficult. Let's further assume the gauge field A, (x)
is spherically symmetric, which also guarantees that A, (z) must be
finite except for the boundaries — origin (22 = 0) and

infinity (2 = 00).

Can we solve it?




Form invariance condition

One of Wightman's axioms on QFT:
(@nl e (Ot A ) i

A, a gauge field
O: a Lorentz transformation
V. a gauge transformation

For the flat spacetime, i.e., O has rigid parameters:
Theorem

(O_l)u s e s e

where V' has only rigid parameters.

C. H. Gu, Phys. Rept. 80, 251 (1981).




SU (2) gauge field in the 3-dimensional Euclidean space

A =p(r) (U719,0) @

where 7 = z,2#, and U is an SU(2) group element.

i n]:=exp[1;waufvww<xn]

U = exp [T9°(x)] =exp[ “Jop()]

— S au g e R (3)

with

= ot flel, O(r) = @), T°=o"/2. (4)
We have defined a matrix w® , to connect the two unit vectors 7/ and
Y*(z)/|¢(x)| in different spaces. The Ansatz (2) must satisfy the form
invariance condition:

(O‘l)u O e e

where O is a constant SO(3) group element, and V' is a constant
SU(2) group element.




Form invariance

In paper we proved that w is restricted to be a constant O(3) group
element. If we assume that detw = 1, the Ansatz (2) becomes

) (U*I(?MU) C Seani T T Rl (5)

with a constant SO(3) group element w. With a proper choice of the
generators T,, we can write the matrix w as

isinio
oA e e ) (6)
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and therefore ‘
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Boundary and topological charge

For the 3-dimensional Euclidean space, the appropriate topological term
is the Chern-Simons term:

ik 2
Scszi—/d%ﬂ(AAdAJrgA/\AAA). (8)
T

In general, Scg takes values in R/27Z. If we require that Scg takes
values in 277Z, it will not affect the quantum Yang-Mills theory in the
path integral.

o / P ( i ) Te(U-L4U)A(U-2dU) A(U-1dU), (9)
which is essentially a Wess-Zumino term. We can define
Scs = 2mikB, (10)

where B is the winding number.




Boundary and topological charge

5 1
il % S <§pg _ pg> (aﬁ i Esmwﬂ) / dSs - (ih x D),
B

where 3 denotes the singular points, for instance 7 =0 and 7 = o0 in
our case, and

1
= /dSﬁ« i (11)

where the contributions from 7 = 0 and 7 = co have an opposite sign
due to the boundary orientation. Since B should also be an integer, the
boundary values of p and # at the singular points will be constrained.




Boundary and topological charge

We can list the possible boundary conditions

Winding number B Plr=0 rmes
(0] 0] (0]
0 1/2 1/2
(0] 1 1

In sum, we have the ansatz

G e e s G (12)

with the possible boundaries listed above.




Classical solutions

One can easily solve the Yang-Mills equation

D,F,, =0,

where we obtain § = 7 and

Figure: Spherically symmetric solutions to 3D Yang-Mills equation.
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SU (2) gauge field in the 4-dimensional Euclidean space

st etie) (U_I(?MU) , U=exp [E nto(r, x4)] . (14)

where 7 = 2#x,,, and pu runs from 1 to 4, while ¢ runs from 1 to 3. The
functions p(7,x4) and 0(7,z4) depend on both 7 and x4, while 2’ is a
unit vector depending only on x1, 2 and x3:

:L,Z

ht 15
n i (15)

where |z|? = le x'x;. The form invariance condition

(A D, A, Az) =V A (x)V

where A is an SO(4) Lorentz transformation and V' is an SU(2) gauge
transformation, both of which have parameters independent of x.




Fix 6

Let us consider a special case p = 4

(A‘lA(Ax))Z: W

p Pesin|pl|
T lel

=p' [, (040") + sind’ (847},)] Ta — p' T €qpe (1 — cost’) R

After a gauge transformation, it has the expression

¢a¢’b
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Lasstaaa Ry n iR (1 — cos|9]) + Sap cos|th| — eabe sin|y|

where
V =exp (¢a Ta) s

(16)
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p and 0

By comparing the terms ~ €4, one obtains
/

IEIEE SR SO L N
() Pe ( cos )|Al‘|2 |x|

For the special case A =1

1 il
— (1 —cosf)—= = £—040
( Rl

= i::I:(9400t g
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= cot (g) S

]
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(19)

where f is an arbitrary smooth function. In the paper, we proved that

f=0. Thus,

0 - T4 -+
cot(§)—:|:m et

(20)




Ansatz

We choose cot (6/2) = x4/|z| and the form invariant Ansatz A, is
given by

T4 — 2 (Taxa):| P 724 4= 2 (Tbxb)
n

Ve G

-
_ oM )nwx,,T“, (21)

T

A=) |

where 74, is the 't Hooft symbol

MNipv = —tr (MiM,uV) = _(Mi)mn(M,uu)nm = Q(Mi);u/ = (Eiuuél Sl 61’;;&/4 7 61‘1/6;44)7

ﬁiwx = —tr (NiM;u/) = _(Ni)mn(Muu)nm = Q(Ni)uu = (ei;,wél = 51'“51/4 T (siu(syA) .
(22)




Topological charge and boundary conditions

For the 4D Yang-Mills theory

1

[
1672

e e (23)

is an integer-valued quantity.
Hence, the integral becomes a surface integral, and only boundaries
contribute to it.

1

e = dQy, eHvPe (§p3 —p2) T [(UT'6,U) UT10,U) (UT10:U)] , (24)
B

where the surface Sg surrounds the singular point 3, and the radius of
the sphere can be taken to be very small. Hence, the factor %p?’ e
has a constant value (Zp? —pQ)ﬁ in the small sphere and can be
brought outside the integration.




Topological charge and boundary conditions

We use z# and ¢'(z) (i = 1,2,3) to denote the spacetime coordinates
and the group coordinates respectively. Using

st

Te [(UT0,0) (UT9,U) (UT18,U)] = = == ==

U—1o,0) (U 19,;U) (U 16,U)]
(25)
obtain

i 1637T2 (§p3 4 )ﬂ (dete) d3£7 (26)

where
e G (27)

and (det e)d>¢ is the Haar measure on the group manifold. For example

itEEcss / (dete)d3¢ =1. (28)
SB

B




Ansatz

In sum, we have
A= 9P i )naw,muTa

with the possible boundary condltlons listed as

Winding Number & i )
0

0
1

0
0 1/2

1

0
i 1

Table: Boundary conditions in 4D.




Classical solutions

Obtain the solution
o p=1/2: Meron
o = TL% : Instanton
o p= ;% : Anti-Instanton
op=1and p=0: Pure gauge and zero

Instanton

Figure: Spherically symmetric solutions to 4D Yang-Mills equation.
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Classical solutions

If we adopt a new coordinate introduced by the conformal
transformation

717—0

= 30
Drdbe 158

¢

then all the classical solutions can be plotted in the new coordinate

Figure: Spherically symmetric solutions to 4D Yang-Mills equation.
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Discussion ...

Al = e1(T)Napw®y + 2(T) oy Ty




Discussion ...

AZ T e e G

o General case?

» Subspace and sub-gauge-group space
(A_l)u v A,(Az) = s Au(x)V

> Lowest winding numbers




Topological Fluctuations

Take 3D Wu-Yang monopole solution as an example:

172

Classical solution
——— Other curve

——— Other curve
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Topological modes:

Form invariance:
(Rl aloh e

Any configuration: i
AP (pg + P, 60 + 6)

D, 0: topological fluctuations

Effective lagrangian:

i 1 R S e PR e
il bt | D s s




Topological modes:

4D:
AP (po + P)

Effective lagrangian:

1 1 ~\ 2
ZFA?UFL?U i ZFEI/FEI/ +24 |:<87¢) T
top cl




Two problems?

Take 3D for example:

1 1 IERPRESE coisa sl e, cp SRR R R ERH G i
SpE e d+;|aﬂ¢| e

4wt i 4wt

We encounter two problems:

o 1/7 — apparent divergent




Topology

Topological boundary condition:

Y(r=0)—0, and Y(r=00) — 0. (35)

Because it's fluctuations

1; —  translational invariant for most of the space

CXCOp == i s =t (36)




Full theory & Effective theory

We would like to make the shift:

¥ ((x = m0)?) — P(a?). (37)

However, the topological fluctuations are constrained by the topological
boundary conditions

1 ~ 1~ 1~
[ @ (310,37 - S131 + 55191)

H 3 3 3 122 1,29 1 oy
_(/near zod x+/near0d z+/elsed x) <T|a#w| T2|w| B 2T2|1/)| ) 1 (38)




Full theory & Effective theory

In sum, we have
1 [EnARES il TaERes:
Z /d3z (;|8M/)(z — z0)|2 — ﬁ|d)(:c — a:o)|2 + ﬁh[)(z —z0)|4)

1 1 ~ 1,~ EENENE
== [ @ (Fod@l - SH@P + s51@])

1 H ~ 1,~ SEEEEE;
i /near i d’x (;|au¢(z)|2 = §|¢(m)|2 F ﬁ|¢(m)|4> ;

The left-hand side of this equation is finite. The second term on the
right-hand side is divergent and gives the difference of the integral (39)
near xo before and after the shift (38), hence it can be viewed as a
counter-term, that cancels the divergence of the first term on the
right-hand side.




Effective theory

o =55 [ 52 [ @2 [Hodol + 555 (143002 -1)7]
= [E2 [ @2 [Hadm + 5 (B0 + 30+ )]

— / L2 / e [* OB + 55 ({ET(?) + 5@ + |{5m|2)2} B
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Effective theory

Legt ~ [0 ¥ (|2])|* + m3p (T (|2 - 1)? (42)

Boundary condition:

[¥|(Jz] = 0) = [¥|(|z| = c0) = 1. (43)

Oy O| + =

8|:v||\1’| 2m3p (9° ~ 1)[¥] = 0. (44)




Effective theory
For 4D:

Lo ~ (Oma(|2])” + 4mip (qQ(IwI) e

pEEEEEEE 2 lOg(Ltop/etop)
Myp = 2 !
op

Boundary condition:

1
q(jz] = 0) = q(|z] = 00) = £5.

1
2Aq—16mipq (qQ_Z) =

Ag=05q+— i 3|x|q




Effective theory

In general for D-dimensions:

1
Lo ~ (3|m|u)2 4 §(u2 — 1)2

Au — (|u\2 - 1)u =0

| |
lim |u(z)| = hmoo|u(x)| Z=til

|z|—0 |z|—



Yang-Mills Mass Gap Problem

Mass gap A: ('06 Jaffe, Witten)

The Hamiltonian H has no spectrum in the interval (0, A) for some
At

The mass gap problem of Yang-Mills theory:
“Prove that for any compact simple gauge group G, a non-trivial
quantum Yang-Mills theory exists on R* and has a mass gap A > 0."




Some Previous Attempts

77 Polyakov:
(24+1)D Georgi-Glashow model has mass gap.

In 4D YM instanton background cannot provide mass gap.
Varying instanton profile can give glueballs mass gap at classical

level.
("84 Diakonov, Petrov)

With some supersymmetries,
e.g. Seiberg-Witten theory.




Two-Point Correlation Function

Consider the operator:
1
€= ZF;}U T
3D:

-

= 6_ msp d 8
<6(_d) 6(d)>Lowest State ~ 16 Cil ( d >

1

lasan:
msp = ————
3D
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Nonlinear Schrodinger Equation

In general for D-dimensions:

el

| | 8|$|u

luhu o7 St ===l

|z|—0 |z|—00



Mass Gap of YM in Our Approach

Use the mass gap of 3D, 4D NLS ('15 Bao, Ruan) .
(S)z,: the effective action evaluated at the first excited state on the
trivial vacuum background. Assume L ~ Lyip.

o For the flat space RP (D = 3,4) with finite size:

i —’—Ltopztop ] for 3D ;
0

log (ﬁ) : for 4D .

etop

for 3D ;

fo: physical cutoff on 6




Exact Spetrum of 1D NLS - 1

5. Yang-Mills Mass Gap Problem



Exact Spetrum of 1D NLS - 2

5. Yang-Mills Mass Gap Problem



Discussion ...

o Mass gap = quantum effects

o Low-energy physics




What's also in our paper

Q

5. Yang-Mills Mass Gap Problem



What's also in our paper

Start from different cores to probe the configuration space:

V = (Vaor U (Veop\Vao1) ) @ Vi

5. Yang-Mills Mass Gap Problem
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5. Yang-Mills Mass Gap Problem



Back up



Convention

The Lie algebra so(4) has the generators given by

(M,uu)mn = (S,umfsun ma 5un5um s (50)

satisfying
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Convention
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Define

1 1

The (anti-)commutation relations are given by
U e e g P e o A B N B R O )]

1 1
G —§5ij, QR D= —§5ij- (56)




Fix p and 6

A general Lorentz transformation generated by M;, is given by

Apy = (e"’14 Mig+p24 Mag+p34 M34)
pv

A sin? (%) — 2044004 sin? (%) :

4 sin|p| — 2
i ol

=0k &61,4 sin|p| — &6
® |l

where @, = (i, 4 = 0) and [io| = v/(pia)”.

A_lAu(Aa:) = (7', (Az)4) exp [—Ta ’ﬁg 0 (r, (Az)4)] 39% exp [Tb ﬁf, 0 (r, (Az)4)] , (57)

where 7 = ztz,, A = (C\gi)li and |Az| = /(Az); (Az);.




Digression: Antiferromagnet Model

N - i 4

St = 5 3 (-1 Swzlii)) - - | (3, 0) = (i + 1,0))
j=1 2 Jo =

=

split 77 into slowly varying mode 7.(j) + rapidly varying mode I(j):

In the continuum limit:

agJ s>

D) = —2a9J 5212 + sl - (10 x Byrt) —

(O1m)2 + 21 - (Do X A1)

1

L) = 5
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