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How to solve Yang-Mills equation?

For SU(N) gauge field in Euclidean space, can we find a systematic
way to solve the Yang-Mills equation

Dµ Fµν = 0 ? (1)

The general case is difficult. Let’s further assume the gauge field Aµ(x)
is spherically symmetric, which also guarantees that Aµ(x) must be
finite except for the boundaries — origin (x2 = 0) and
infinity (x2 =∞).

Can we solve it?
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Form invariance condition

One of Wightman’s axioms on QFT:

(O−1)µ
ν Aν(Ox) = V −1Aµ(x)V + V −1∂µV

Aµ: a gauge field
O: a Lorentz transformation
V : a gauge transformation

For the flat spacetime, i.e., O has rigid parameters:
Theorem (

O−1
)
µ
ν Aν(Ox) = V −1Aµ(x)V

where V has only rigid parameters.

C. H. Gu, Phys. Rept. 80, 251 (1981).
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SU(2) gauge field in the 3-dimensional Euclidean space

Aµ = p(τ)
(
U−1∂µU

)
, (2)

where τ ≡ xµxµ, and U is an SU(2) group element.

U = exp [Taψ
a(x)] = exp

[
Ta
ψa(x)

|ψ(x)|
|ψ(x)|

]
= exp [Ta ω

a
µ n̂

µ|ψ(x)|]

= exp [Ta ω
a
µ n̂

µθ(τ)] , (3)

with
n̂µ ≡ xµ/|x| , θ(τ) ≡ |ψ(x)| , T a = σa/2i . (4)

We have defined a matrix ωa µ to connect the two unit vectors n̂µ and
ψa(x)/|ψ(x)| in different spaces. The Ansatz (2) must satisfy the form
invariance condition:(

O−1
)
µ
ν Aν(Ox) = V −1Aµ(x)V ,

where O is a constant SO(3) group element, and V is a constant
SU(2) group element.
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Form invariance

In paper we proved that ω is restricted to be a constant O(3) group
element. If we assume that detω = 1, the Ansatz (2) becomes

Aµ = p(τ)
(
U−1∂µU

)
, U = exp [Ta ω

a
µ n̂

µθ(τ)] , (5)

with a constant SO(3) group element ω. With a proper choice of the
generators Ta, we can write the matrix ω as

ω =

 1 0 0
0 1 0
0 0 1

 (6)

and therefore
U = exp

[
Ti n̂

iθ(τ)
]
. (7)
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Boundary and topological charge

For the 3-dimensional Euclidean space, the appropriate topological term
is the Chern-Simons term:

SCS =
ik

4π

∫
d3xTr

(
A ∧ dA+

2

3
A ∧A ∧A

)
. (8)

In general, SCS takes values in R/2πZ. If we require that SCS takes
values in 2πZ, it will not affect the quantum Yang-Mills theory in the
path integral.

SCS =
ik

4π

∫
d3x

(
2

3
p3 − p2

)
Tr(U−1dU)∧(U−1dU)∧(U−1dU) , (9)

which is essentially a Wess-Zumino term. We can define

SCS = 2πikB , (10)

where B is the winding number.
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Boundary and topological charge

B =
3

2π2

∑
β

(
2

3
p3
β − p2

β

)(
θβ −

1

2
sin2θβ

)∫
dSβ n̂ · (∂1n̂× ∂2n̂) ,

where β denotes the singular points, for instance τ = 0 and τ =∞ in
our case, and

1

4π

∫
dS n̂ · (∂1n̂× ∂2n̂) = ±1 , (11)

where the contributions from τ = 0 and τ =∞ have an opposite sign
due to the boundary orientation. Since B should also be an integer, the
boundary values of p and θ at the singular points will be constrained.
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Boundary and topological charge

We can list the possible boundary conditions

Winding number B p|τ=0 p|τ=∞ θ|τ=0 θ|τ=∞

0 0 0 π π
0 1/2 1/2 π π
0 1 1 π π
· · · · · · · · · · · · · · ·

In sum, we have the ansatz

Aµ = p(τ)
(
U−1∂µU

)
, U = exp

[
Ti n̂

iθ(τ)
]
, (12)

with the possible boundaries listed above.

2. 3D 9/48



Classical solutions

One can easily solve the Yang-Mills equation

Dµ Fµν = 0 , (13)

where we obtain θ = π and

Figure: Spherically symmetric solutions to 3D Yang-Mills equation.
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SU(2) gauge field in the 4-dimensional Euclidean space

Aµ = p(τ, x4)
(
U−1∂µU

)
, U = exp

[
Ti n̂

i θ(τ, x4)
]
, (14)

where τ ≡ xµxµ, and µ runs from 1 to 4, while i runs from 1 to 3. The
functions p(τ, x4) and θ(τ, x4) depend on both τ and x4, while n̂i is a
unit vector depending only on x1, x2 and x3:

n̂i ≡ xi

|x|
, (15)

where |x|2 ≡
∑3

i=1 x
ixi. The form invariance condition

(Λ−1)µ
ν Aν(Λx) = V −1Aµ(x)V

where Λ is an SO(4) Lorentz transformation and V is an SU(2) gauge
transformation, both of which have parameters independent of x.
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Fix θ

Let us consider a special case µ = 4(
Λ−1A(Λx)

)a
µ=4

Ta

=p′
[
n̂′a(∂4θ

′) + sinθ′(∂4n̂
′
a)
]
Ta − p′ Ta εabc (1− cosθ′)

xb

|Λx|

ϕc sin|ϕ|
|ϕ|

|Λx|
.

After a gauge transformation, it has the expression

V −1Aaµ=4TaV = p

[
ψaψb

|ψ|2
(1− cos|ψ|) + δab cos|ψ| − εabc sin|ψ|

ψc

|ψ|

]
Tbn̂a∂4θ , (16)

where
V = exp (ψa Ta) , (17)
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p and θ

By comparing the terms ∼ εabc, one obtains

ψc = ±ϕc , −(1− cosθ′)
p′

|Λx|2
= ± p

|x|
∂4θ . (18)

For the special case Λ = 1

− (1− cos θ)
1

|x|2
= ± 1

|x|
∂4θ

⇒ 1

|x|
= ±∂4 cot

(
θ

2

)
⇒ cot

(
θ

2

)
= ±x4

|x|
± f(|x|) , (19)

where f is an arbitrary smooth function. In the paper, we proved that
f = 0. Thus,

cot

(
θ

2

)
= ±x4

|x|
and p = p(τ) . (20)
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Ansatz

We choose cot (θ/2) = x4/|x| and the form invariant Ansatz Aµ is
given by

Aµ = p(τ)

[
x4 − 2 (T axa)√

τ

]
∂µ

[
x4 + 2

(
T bxb

)
√
τ

]

= 2
p(τ)

τ
ηaµνxνT

a , (21)

where ηaµν is the ’t Hooft symbol

ηiµν = −tr (MiMµν) = −(Mi)mn(Mµν)nm = 2(Mi)µν = (εiµν4 + δiµδν4 − δiνδµ4) ,

η̄iµν = −tr (NiMµν) = −(Ni)mn(Mµν)nm = 2(Ni)µν = (εiµν4 − δiµδν4 + δiνδµ4) .
(22)
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Topological charge and boundary conditions

For the 4D Yang-Mills theory

k = − 1

16π2

∫
d4xTr [Fµν(∗Fµν)] (23)

is an integer-valued quantity.
Hence, the integral becomes a surface integral, and only boundaries
contribute to it.

k = −
1

8π2

∮
S3
β

dΩµ ε
µνρσ

(
2

3
p3 − p2

)
Tr
[
(U−1∂νU) (U−1∂ρU) (U−1∂σU)

]
, (24)

where the surface S3
β surrounds the singular point β, and the radius of

the sphere can be taken to be very small. Hence, the factor 2
3p

3 − p2

has a constant value
(

2
3p

3 − p2
)
β

in the small sphere and can be
brought outside the integration.
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Topological charge and boundary conditions

We use xµ and ξi(x) (i = 1, 2, 3) to denote the spacetime coordinates
and the group coordinates respectively. Using

Tr
[
(U−1∂νU) (U−1∂ρU) (U−1∂σU)

]
=

∂ξi

∂xν
∂ξj

∂xρ
∂ξk

∂xσ
Tr
[
(U−1∂iU) (U−1∂jU) (U−1∂kU)

]
,

(25)

obtain

dk =
3

16π2

(
2

3
p3 − p2

)
β

(det e) d3ξ , (26)

where
U−1∂iU = eai (ξ)Ta , (27)

and (det e)d3ξ is the Haar measure on the group manifold. For example

1

16π2

∫
S3
|x|→∞

(det e) d3ξ = 1 . (28)
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Ansatz

In sum, we have

Aµ = 2
p(τ)

τ
ηaµνxνT

a , (29)

with the possible boundary conditions listed as

Winding Number k p|τ=0 p|τ=∞

0 0 0
0 1/2 1/2
0 1 1
1 0 1
-1 1 0
· · · · · · · · ·

Table: Boundary conditions in 4D.
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Classical solutions

Obtain the solution

◦ p = 1/2 : Meron

◦ p = τ
τ+c : Instanton

◦ p = c
τ+c : Anti-Instanton

◦ p = 1 and p = 0 : Pure gauge and zero

Figure: Spherically symmetric solutions to 4D Yang-Mills equation.
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Classical solutions

If we adopt a new coordinate introduced by the conformal
transformation

ζ =
1

2

τ − c
τ + c

, (30)

then all the classical solutions can be plotted in the new coordinate

Figure: Spherically symmetric solutions to 4D Yang-Mills equation.
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Discussion ...

◦
Aaµ = c1(τ)ηaµνxν + c2(τ)η̄aµνxν (31)

◦ General case?

I Subspace and sub-gauge-group space

(Λ−1)µ
ν Aν(Λx) = V −1Aµ(x)V

I Lowest winding numbers
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Topological Fluctuations

Take 3D Wu-Yang monopole solution as an example:
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Topological modes:

Form invariance:

(O−1) µ
ν Atop

ν (Ox) = V −1Atop
µ (x)V

Any configuration:
Atop
µ (p0 + p̃, θ0 + θ̃)

p̃, θ̃: topological fluctuations

Effective lagrangian:

1

4
F aµνF

a
µν

∣∣∣∣
top

=
1

4
F aµνF

a
µν

∣∣∣∣
cl

+ 4
∣∣∂τ ψ̃∣∣2 − 1

τ2

∣∣ψ̃∣∣2 +
1

2τ2

∣∣ψ̃∣∣4 , (32)
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Topological modes:

4D:
Atop
µ (p0 + p̃)

Effective lagrangian:

1

4
F aµνF

a
µν

∣∣∣∣
top

=
1

4
F aµνF

a
µν

∣∣∣∣
cl

+ 24

[(
∂τ φ̃

)2
− 1

2τ2

(
φ̃
)2

+
1

τ2

(
φ̃
)4
]
,

(33)
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Two problems?

Take 3D for example:

1

4
F aµνF

a
µν

∣∣∣∣
top

=
1

4
F aµνF

a
µν

∣∣∣∣
cl

+
1

τ

∣∣∂µψ̃∣∣2 − 1

τ2

∣∣ψ̃∣∣2 +
1

2τ2

∣∣ψ̃∣∣4 , (34)

We encounter two problems:

◦ 1/τ −→ apparent divergent

◦ ψ̃ = ψ̃(τ)
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Topology

Topological boundary condition:

ψ̃(τ = 0) −→ 0 , and ψ̃(τ =∞) −→ 0 . (35)

Because it’s fluctuations

ψ̃ −→ translational invariant for most of the space

except τ = 0 and τ =∞ . (36)
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Full theory & Effective theory

We would like to make the shift:

ψ̃
(
(x− x0)2

)
−→ ψ̃(x2) . (37)

However, the topological fluctuations are constrained by the topological
boundary conditions∫

d3x

(
1

τ

∣∣∂µψ̃∣∣2 − 1

τ2

∣∣ψ̃∣∣2 +
1

2τ2

∣∣ψ̃∣∣4)
=

(∫
near x0

d3x+

∫
near 0

d3x+

∫
else

d3x

) (
1

τ

∣∣∂µψ̃∣∣2 − 1

τ2

∣∣ψ̃∣∣2 +
1

2τ2

∣∣ψ̃∣∣4) , (38)
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Full theory & Effective theory

In sum, we have

1

g2

∫
d3x

(
1

τ

∣∣∂µψ̃(x− x0)
∣∣2 − 1

τ2

∣∣ψ̃(x− x0)
∣∣2 +

1

2τ2

∣∣ψ̃(x− x0)
∣∣4)

=
1

g2

∫
d3x

(
1

τ

∣∣∂µψ̃(x)
∣∣2 − 1

τ2

∣∣ψ̃(x)
∣∣2 +

1

2τ2

∣∣ψ̃(x)
∣∣4)

−
1

g2

∫
near x0

d3x

(
1

τ

∣∣∂µψ̃(x)
∣∣2 − 1

τ2

∣∣ψ̃(x)
∣∣2 +

1

2τ2

∣∣ψ̃(x)
∣∣4) , (39)

The left-hand side of this equation is finite. The second term on the
right-hand side is divergent and gives the difference of the integral (39)
near x0 before and after the shift (38), hence it can be viewed as a
counter-term, that cancels the divergence of the first term on the
right-hand side.
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Effective theory

〈S〉x0 =
1

g2

∫
d3x0

V

∫
d3x

[
1

τ

∣∣∂µψ̃(τ)
∣∣2 +

1

2τ2

(
|1 + ψ̃(τ)|2 − 1

)2
]

=
1

g2

∫
d3x0

V

∫
d3x

[
1

τ

∣∣∂µψ̃(τ)
∣∣2 +

1

2τ2

(
ψ̃†(τ) + ψ̃(τ) + |ψ̃(τ)|2

)2
]

=
1

g2

∫
d3x0

V

∫
d3x

[
1

τ

∣∣∂µψ̃(τ̃)
∣∣2 +

1

2τ2

(
ψ̃†(τ̃) + ψ̃(τ̃) + |ψ̃(τ̃)|2

)2
]

+ (counter)

=
1

g2

∫ L2
top

`2top

2π
√
τ dτ

V

∫
d3x

[
1

τ

∣∣∂µψ̃(τ̃)
∣∣2 +

1

2τ2

(
ψ̃†(τ̃) + ψ̃(τ̃) + |ψ̃(τ̃)|2

)2
]

≈
3Ltop

g2L3

∫
d3x

[
|∂|x|ψ̃(|x|)|2 +m2

3D(|1 + ψ̃(|x|)|2 − 1)2
]

=
3Ltop

g2L3

∫
d3x

[
|∂|x|Ψ(|x|)|2 +m2

3D(|Ψ(|x|)|2 − 1)2
]
, (40)

where

m2
3D ≡

1

2`topLtop
. (41)
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Effective theory

Leff ∼ |∂|x|Ψ(|x|)|2 +m2
3D(|Ψ(|x|)|2 − 1)2 (42)

Boundary condition:

|Ψ|(|x| = 0) = |Ψ|(|x| =∞) = 1 . (43)

EOM:

∂2
|x||Ψ|+

2

|x|
∂|x||Ψ| − 2m2

3D (|Ψ|2 − 1)|Ψ| = 0 . (44)
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Effective theory

For 4D:

Leff ∼
(
∂|x|q(|x|)

)2
+ 4m2

4D

(
q2(|x|)− 1

4

)2

(45)

where

m2
4D ≡

2 log(Ltop/`top)

L2
top

. (46)

Boundary condition:

q(|x| = 0) = q(|x| =∞) = ±1

2
. (47)

EOM:

2 ∆ q − 16m2
4D q

(
q2 − 1

4

)
= 0

with

∆ q = ∂2
|x| q +

3

|x|
∂|x|q
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Effective theory

In general for D-dimensions:

Leff ∼
(
∂|x|u

)2
+

1

2
(u2 − 1)2 (48)

∆u− (|u|2 − 1)u = 0

∆u = ∂2
|x|u+

D − 1

|x|
∂|x|u

lim
|x|→0

|u(x)| = lim
|x|→∞

|u(x)| = 1
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Yang-Mills Mass Gap Problem

Mass gap ∆: (’06 Jaffe, Witten)

The Hamiltonian H has no spectrum in the interval (0, ∆) for some
∆ > 0.

The mass gap problem of Yang-Mills theory:
“Prove that for any compact simple gauge group G, a non-trivial
quantum Yang-Mills theory exists on R4 and has a mass gap ∆ > 0.”
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Some Previous Attempts

◦ ’77 Polyakov:
(2+1)D Georgi-Glashow model has mass gap.

In 4D YM instanton background cannot provide mass gap.

◦ Varying instanton profile can give glueballs mass gap at classical
level.
(’84 Diakonov, Petrov)

◦ With some supersymmetries,
e.g. Seiberg-Witten theory.

◦ · · ·
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Two-Point Correlation Function

Consider the operator:

ε ≡ 1

4
F aµν F

a
µν

3D:

〈ε(−~d ) ε(~d )〉Lowest State ≈ 16C4
1

(
e−m3D d

d

)8

with

m2
3D ≡

1

2`topLtop

4D:

〈ε(−~d ) ε(~d )〉Lowest State ≈
36C4

1 π
2

m2
4D d

2

(
e−m4D d

d

)8

with

m2
4D ≡

2 log(Ltop/`top)

L2
top

. (49)
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Nonlinear Schrödinger Equation

In general for D-dimensions:

∆u− (|u|2 − 1)u = 0

∆u = ∂2
|x|u+

D − 1

|x|
∂|x|u

lim
|x|→0

|u(x)| = lim
|x|→∞

|u(x)| = 1
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Mass Gap of YM in Our Approach

Use the mass gap of 3D, 4D NLS (’15 Bao, Ruan) .
〈S〉x0 : the effective action evaluated at the first excited state on the
trivial vacuum background. Assume L ≈ Ltop.

◦ For the flat space RD (D = 3, 4) with finite size:

〈S〉x0 ∝

{ 1
g2

1√
Ltop`top

, for 3D ;

1
g2 log

(
Ltop

`top

)
, for 4D .

◦ For the sphere SD (D = 3, 4) with a radius R:

〈S〉x0 ∝

{ 1
g2R

, for 3D ;

1
g2 log

[
cot
(
θ0
2

)]
, for 4D ,

θ0: physical cutoff on θ
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Exact Spetrum of 1D NLS - 1
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Exact Spetrum of 1D NLS - 2
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Discussion ...

◦ Mass gap = quantum effects

◦ Low-energy physics
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What’s also in our paper

Acl

Atop
Q

5. Yang-Mills Mass Gap Problem 40/48



What’s also in our paper

Start from different cores to probe the configuration space:

V =
(
Vsol ∪ (Vtop\Vsol)

)
⊕ V ⊥top
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Back up
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Convention

The Lie algebra so(4) has the generators given by

(Mµν)mn ≡ δµmδνn − δµnδνm , (50)

satisfying

[Mµν , Mρσ] = δνρMµσ + δµσMνρ − δµρMνσ − δνσMµρ . (51)
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Convention

Let us write down the generators in fundamental representations:

M23 =


0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

 ≡ J1 , M14 =


0 0 0 1
0 0 0 0
0 0 0 0
−1 0 0 0

 ≡ K1 ,

M31 =


0 0 −1 0
0 0 0 0
1 0 0 0
0 0 0 0

 ≡ J2 , M24 =


0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

 ≡ K2 ,

M12 =


0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

 ≡ J3 , M34 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

 ≡ K3 .

(52)
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[Ji, Jj ] = −εijkJk , [Ki, Kj ] = −εijkJk , [Ki, Jj ] = −εijkKk .
(53)

Define

Mi ≡
1

2
(Ji +Ki) , Ni ≡

1

2
(Ji −Ki) . (54)

The (anti-)commutation relations are given by

[Mi, Mj ] = −εijkMk , [Ni, Nj ] = −εijkNk , [Mi, Nj ] = 0 , (55)

{Mi, Mj} = −1

2
δij , {Ni, Nj} = −1

2
δij . (56)
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Fix p and θ

A general Lorentz transformation generated by Mi4 is given by

Λµν =
(
eϕ14M14+ϕ24M24+ϕ34M34

)
µν

= δµν +
ϕµ

|ϕ|
δν4 sin|ϕ| −

ϕν

|ϕ|
δµ4 sin|ϕ| − 2

ϕµϕν

|ϕ|2
sin2

(
|ϕ|
2

)
− 2δµ4δν4 sin2

(
|ϕ|
2

)
,

where ϕµ ≡ (ϕi4, ϕ4 = 0) and |ϕ| ≡
√

(ϕi4)2.

Λ−1Aµ(Λx) = p
(
τ, (Λx)4

)
exp

[
−Ta n̂′a θ (τ, (Λx)4)

] ∂

∂xµ
exp

[
Tb n̂

′
b θ (τ, (Λx)4)

]
, (57)

where τ ≡ xµxµ, n̂′i ≡
(Λx)i
|Λx| and |Λx| ≡

√
(Λx)i (Λx)i.
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Digression: Antiferromagnet Model

S[~n] = s

N∑
j=1

(−1)jSWZ [~n(j)]− Js2

2

∫ T

0

dx0

N∑
j=1

(~n(j, x0)− ~n(j + 1, x0))
2

split ~n into slowly varying mode ~m(j) + rapidly varying mode ~l(j):

~n(j) = ~m(j) + (−1)ja0~l(j)

~n2 = ~m2 = 1 , ~m ·~l = 0

In the continuum limit:

L(~m,~l) = −2a0Js
2~l2 + s~l · (~m× ∂0 ~m)− a0Js

2

2
(∂1 ~m)2 +

s

2
~m · (∂0 ~m× ∂1 ~m)

Integrating out the rapidly varying mode ~l:

L(~m) =
1

2g

(
1

vs
(∂0 ~m)2 − vs(∂1 ~m)2

)
+

θ

8π
εµν ~m · (∂µ ~m× ∂ν ~m)

5. Yang-Mills Mass Gap Problem 48/48


	Classical Solution
	3D
	4D
	Topological Fluctuations
	Yang-Mills Mass Gap Problem

