

The 16 pairs of circular coils for EMF shielding of JUNO's detector

Teerapat Payupol, Narumon Suwonjandee and Burin Asavapibhop

Outlines

- Introduction
- 16 pairs of circular coils with equal space – The coils with repeated current
- Mis-location study
- The coils with small curves
- Effect of EMF secular variation
- Conclusions

Introduction

- The Jiangmen Underground Neutrino Observatory (JUNO) consists of the Photo Multiplier Tubes (PMTs) that detect the light signal from neutrino's interactions.
- **The magnetic field can reduce the PMTs' efficiency**
- At JUNO's construction site, the Earth Magnetic Field (EMF) is approximately 0.448 G. Therefore, **the PMTs are necessary to be shielded from the EMF.**
- This study aims to design **current-carrying coils that generate magnetic field in the opposite direction of the EMF**, thus, the two field compensate each other.

16 Pairs with Equal Space

- Spherical coils consist of **32** circular coils with the **same space of 1.36** m.
- The axis of symmetry of the coils lays **exactly opposite to the EMF direction.**
- The currents are optimize at the spherical surface of diameter **39.5 m (CD PMTs)**

Results | 16 Pairs (2/2)

$$
Residue - to - EMF Deviation = \frac{\sqrt{(B_x + EMF_x)^2 + (B_y + EMF_y)^2 + (B_z + EMF_z)^2}}{EMF} \times 100\%
$$

Preliminary requirement

- The deviation < 10% at CD region (\emptyset =39.5 m)
- The deviation <20% at veto region (\emptyset =41.5 m)

- **At CD region,** the **maximum of residue-to-EMF deviation is less than 5%** with **mean value is less than 1%**
- **At veto region, the maximum of residue-to-EMF deviation is less than 15%** with **mean value is less than 5%**

Current Optimization with Constraints

- Since currents in some coils are roughly the same (less than 3 A difference)
- The optimization was performed with 3 constraints
	- **1. The currents for coils no. 3-30 are the same**
	- **2. The currents for coils no. 2-31 are the same**
	- **3. The currents for all coils are the same**
- The optimization is done at the surface of $\phi = 39.5 \text{ m}$

Result from Current Optimization with Constraints (1/3)

Result from Current Optimization with Constraints (2/3)

Result from Current Optimization with Constraints (3/3)

- **At CD region,** currents with **constraint 1 and 2** provide the maximum of residue-to-EMF deviation **less than 5%** and current with **constraint 3** give the maximum **less than 10%**
- **At veto region,** currents with **constraint 1 and 2** provide the maximum of residue-to-EMF deviation **less than 15%** and current with **constraint 3** give the maximum **less than 20%**
- The coils **composing of 30 coils with the same current + other 2 coils** can be utilized and provide acceptable efficiency as the case without constrain.

Mis-location Study

- Two coils are assumed to be mis-located for **±10 cm.**
	- **Case A** : Coils no.1 and 2
	- **Case B_ :** Coils no. 2 and 3
- **Note:** The radii are assumed to change in order to make the circular coils remain in the same spherical surface and the currents without constraint are used

Result of Case A (1/2)

PARTICLE
PHYSICS
CHULA

Result of Case A (2/2)

- **At CD region,** the coils **cases A1, A3 and A4** provide the maximum of residue-to-EMF deviation **less than 5%** and current with **constrain A2** give the maximum **less than 10%**
	- Case A2 provide highest deviation possibly because the the smallest coil move away from the pole -> large unshielded area at the pole and large space btw. coil no. 2 and 3.
- **At veto region,** the coils **case A1 to A4** provide the maximum of residue-to-EMF deviation **less than 15%.**
- The construction company guarantees the installation precision of 2 cm -> mis-location coils are negligible.

Result of Case B (1/2)

PARTICLE
PHYSICS
CHULA

Result of Case B (2/2)

- **At CD region,** the coils **cases A1 to A4** provide the maximum of residue-to-EMF deviation **less than 5%**
- **At veto region,** the coils **cases A1 to A4** provide the maximum of residue-to-EMF deviation **less than 15%.**
- Again, the construction company guarantees the installation precision of 2 cm -> mis-location coils are negligible.

Coils with Small Curve

- It is possible that circular coils overlap with supporting truss.
- Some coils need to be installed with small curves.
- **Assumption:** the radius of small curves is 20 cm, there are 4 small curves on all circular coils -> total 128 small curves.

PARTICLE
PHYSICS CHULA **Result of Coils with Small Curve (1/2)**

- **At CD region,** the coils with small curves provide higher max and mean of residue-to-EMF deviation as compered to the coils without small curves. However the deviation is **less than 5%.**
- **At veto region,** the coils with small curves provide roughly the same max and mean of residue-to-EMF deviation and the deviation is **less than 15%.**
- The small curves can be built to avoid the supporting truss and the residue-to-EMF deviations are remain acceptable.

EMF Secular Variation

- EMF at Jiangmen changes -0.0607°/year for declination and 0.1437°/year for inclination. (calculated by American National Centers for Environmental Information)
	- The dominant change is **inclination, ~2.87°** of inclination in 20 years.
- How will the residue be if the EMF fluctuates and we still using the same coil?
- Assumption: The EMF turns the direction for 1°, 2° and 5° of its inclination angle, both clockwise and anti-clockwise.
	- However, the total intensity remains the same.

PARTICLE Result of EMF variation (2/2)

Conclusions

- The **16 pairs of circular coils** forming a sphere of **diameter 43.5 m** with equal space of **1.36 m** are simulated as a JUNO's compensation coils.
- The currents are optimized in the way that the **residual magnetic field is as low as possible on the CD PMT's region.**
	- **At CD region,** the **maximum of residue-to-EMF deviation less than 5%** with **mean value less than 1%**
	- **At veto region, the maximum of residue-to-EMF deviation less than 15%** with **mean value less than 5%**
- The coils **composing of 30 coils with the same current + other 2 coils** can be utilized and provide **maximum of residue-to-EMF deviation less than 5%** at CD region and **less than 15% at veto region.**
- **The 16 pairs of coils with two coils that mis-located for ±10 cm** provide the **maximum of residue-to-EMF deviation less than 10% at CD region** and **less than 15% at veto region.**
	- Since, the construction company guarantees the installation precision of 2 cm -> mis- location coils are negligible.
- The small curves can be built to avoid the supporting truss and provide **maximum of residue-to-EMF deviation less than 5%** at CD region and **less than 15% at veto region.**
- When the EMF inclination angle changes less than 3[∘] during JUNO's operating time, the maximum of residue-to-EMF deviation **less than 10% at CD region** and **less than 20% at veto region.** 22

Meet Preliminary Requirements

Thank you

Question?

Back Up | PMT's efficiency VS Magnetic Field

Current Optimization (1/4)

- Points of Interest: point on sphere of diameter 39.0 m
- We want to find the currents flowing in each coil that generates B-field close to (0.37988, 0.01505, 0.23772) G.
	- These values are referred as EMFx, EMFy and EMFz respectively.
	- The EMF was assumed to be uniform for this calculation.
- Use Least Square method in Mathematica for optimization of the currents
- We need 3 Matrices for optimization
	- 1. Matrix of coil-generated magnetic field -> *B*
	- 2. Matrix of current's scaling factor or matrix of variable -> *x*
	- 3. Matrix of goal of generated magnetic field (+EMF) -> *EMF* 25

Step 1: Construct Matrix **B**

- Let m be the number of coils and n be the number of points of interest \bullet
- The magnetic field at one point is the magnetic field from all m coils. \bullet

$$
\bullet \quad\n\begin{bmatrix}\nB_{x1}^{c1} & B_{x1}^{c2} & B_{x1}^{c3} & B_{x1}^{cm} \\
B_{y1}^{c1} & B_{y1}^{c2} & B_{y1}^{c3} & \cdots & B_{y1}^{cm} \\
B_{z1}^{c1} & B_{z1}^{c2} & B_{z1}^{c3} & B_{z1}^{cm}\n\end{bmatrix}_{3 \times m}
$$

Now, I consider n point \bullet

Each element is calculated numerically with Radia and initial currents $I_0 = 1$ A \bullet

Current Optimization (3/4)

Step 2: Construct a matrix of currents scaling factors x

$$
\bullet \quad \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix}_{\{m \times 1\}}
$$

 $I = xI_0$ \bullet

Step 3: Construct a matrix of constant EMF, EMF

$$
\begin{bmatrix} EMFx \\ EMFy \\ EMFz \\ \vdots \\ EMFx \\ EMFy \\ EMFz \\ EMFz \end{bmatrix}_{\{3n\times1\}}
$$

Current Optimization (4/4)

Step 4: Form the equation $mx=b$

- Use Mathematica to find x that minimize norm of **mx-b** \bullet
- The results are m values of the scaling factors, which are equal to optimized electric currents
	- $-$ Then, these currents are used to calculate for magnetic field.

Current Optimization with Constrain (1/4)

- Constrain : The currents for coil pair 1-15 are the same
- Points of Interest: point on sphere of diameter 39.0 m
- We want to find the currents flowing in each coil that generates B-field close to (0.37988, 0.01505, 0.23772) G.
	- These values are referred as EMFx, EMFy and EMFz respectively.
	- The EMF was assumed to be uniform for this calculation.
- Use Least Square method in Mathematica for optimization of the currents
- We need 3 Matrices for optimization
	- 1. Matrix of coil-generated magnetic field -> *B*
	- 2. Matrix of current's scaling factor or matrix of variable -> *x*
	- 3. Matrix of goal of generated magnetic field (+EMF) -> *EMF* 29

Gunrent Optimization (2/4)

Step 1: Construct Matrix **B**

- Let n be the number of points of interest
- The magnetic field at one point is the superposition of magnetic field from all 32 coils. \bullet

 $\bullet \quad \begin{bmatrix} B_{x1}^{c1} & (B_{x1}^{c2} + \cdots + B_{x1}^{c31}) & B_{x1}^{c32} \\ B_{y1}^{c1} & (B_{y1}^{c2} + \cdots + B_{y1}^{c31}) & B_{y1}^{c32} \\ B_{z1}^{c1} & (B_{z1}^{c2} + \cdots + B_{z1}^{c31}) & B_{z1}^{c32} \\ \end{bmatrix}_{\{3\times 3\}}$

Now, consider n point

$$
\begin{bmatrix}\nB_{x1}^{c1} & (B_{x1}^{c2} + \cdots + B_{x1}^{c31}) & B_{x1}^{c32} \\
B_{y1}^{c1} & (B_{y1}^{c2} + \cdots + B_{y1}^{c31}) & B_{y1}^{c32} \\
B_{z1}^{c1} & (B_{z1}^{c2} + \cdots + B_{z1}^{c31}) & B_{z1}^{c32} \\
\vdots & \vdots & \vdots \\
B_{xn}^{c1} & (B_{xn}^{c2} + \cdots + B_{xn}^{c31}) & B_{xn}^{c32} \\
B_{yn}^{c1} & (B_{yn}^{c2} + \cdots + B_{n1}^{c31}) & B_{yn}^{c32} \\
B_{zn}^{c1} & (B_{zn}^{c2} + \cdots + B_{zn}^{c31}) & B_{zn}^{c32} \\
B_{zn}^{c1} & (B_{zn}^{c2} + \cdots + B_{zn}^{c31}) & B_{zn}^{c32}\n\end{bmatrix}
$$

Each element is calculated numerically with Radia and initial currents $I_0 = 1$ A \bullet

Current Optimization with Constrain (3/4)

Step 2: Construct a matrix of currents scaling factors x

$$
\bullet \quad \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}_{\{3 \times 1\}}
$$

 $I = xI_0$ \bullet

Step 3: Construct a matrix of constant EMF, EMF

$$
\begin{bmatrix} EMFx \\ EMFy \\ EMFz \\ \vdots \\ EMFx \\ EMFy \\ EMFz \\ EMFz \end{bmatrix}_{\{3n\times1\}}
$$

•

Current Optimization with Constrain (4/4)

Step 4: Form the equation *mx*=*b*

- Use Mathematica to find x that minimize norm of *mx-b*
- The results are *m* values of the scaling factors, which **are equal to optimized electric currents**
	- **Then, these currents are used to calculate for magnetic field.**