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Introduction - motivation

Chen Lin (CCNU, IoPP) SCET, an introduction January 12, 2018 3 / 28



Introduction - background

Consider the problems that we deal with in text books (e.g. Peskin)

Pair annihilation: e+e− → µ+µ− or qq̄

Compton scattering :e−γ → e−γ

masses of the particles are usually taken to be zero(m ≈ 0) to simplify the
cross-section calculation.

Now look at some laboratory energy scales:

LHC: 6.5TeVpp

RHIC: 255GeVpp

HERA, BEPC-II ...

energy scales could range
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Introduction - scales

Some typical processes:

DIS, Drell-Yan...

Higgs production, Top decay...

Particles involved:

e, u, d < 10MeV

c , τ ∼ 1GeV

t, W±, Z , H ∼ 100GeV

Energy scale involved:

center-of-mass energy

collinear momentum

transverse momentum

QFT is just the beginning...
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Introduction - framework

Consider a simple process:

e.g. DIS l(k) + A(p)→ l(k ′) + X

Large momentum transfer Q2 = −q2 = (k − k ′)2

Note the Infrared nature of QCD.
Non-perturbative dynamics of the proton

factorization (collinear): k = (xP+, 0, 0T )

cross-section(σ) = hard(Ĥ) ⊗ PDF(Φ̂)

PDF evolution using data fitting CTEQDGLAP

hard kernel can be computed perturbatively

How do we deal with divergences?
- one-loop example:

self-energy, vacuum polarization, vertex correction
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Example: Self-Energy
Consider one-loop electron self-energy:

pFfak
p−k

yf pF =
i(/p + m0)

p2 −m2
0

[−iΣ2(p)]
i(/p + m0)

p2 −m2
0

where we have (with dimensional regularization):

Σ2(p) = −ie2µ2ε

∫
dnk

(2π)n
γµ(/k + m0)γµ

[k2 −m2
0 + iε][(p − k)2 + iε]

We then use Feynman parameterization to integrate out k :

Σ2(p) =
α

2π
(ε− 1)/p

[
−p2

4πµ2

]−ε
Γ(ε)B(2− ε, 1− ε)

divergent term comes from Γ and B function.
But why? Where does it come from? Soft? Collinear?
How will this divergence contribute at high order? Heavy mass?
details:[24]
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method by regions

Let’s consider one-loop self-energy with two different particle masses at zero
external momentum, the integral:

I =

∫ ∞
0

dk
k

(k2 + m2)(k2 + M2)
=

ln M
m

M2 −m2

expanding in the large mass hierarchy limit (m2 � M2):

I =
ln M

m

M2

(
1 +

m2

M2
+

m4

M4
+ · · ·

)
Is it analytic? What else can we do to this integral?
Expand the denominator without causing IR divergence?
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method by regions

Let’s introduce a cut-off Λ to the interval.

I = I1,Λ + I2,Λ =

∫ Λ

0

dk
k

(k2 + m2)(k2 + M2)
+

∫ ∞
Λ

dk
k

(k2 + m2)(k2 + M2)

where the scale Λ is chosen to be m� Λ� M. Then

I1,Λ =

∫ Λ

0

dk
k

(k2 + m2)M2

(
1−

k2

M2
+

k4

M4
+ · · ·

)
=
− ln( m

Λ )

M2
−

Λ2

2M4
+O

(
Λ4

M6
,
m2

M4
ln

(
Λ

m

))

I2,Λ =

∫ ∞
Λ

dk
k

k2(k2 + M2)

(
1−

m2

k2
+

m4

k4
+ · · ·

)
=
− ln( Λ

M )

M2
+

Λ2

2M4
+O

(
Λ4

M6
ln

(
Λ

m

))

where I1 represents the low-energy region, and I2 represents the high-energy
region. Combining the integrals, we have:

I = − 1

M2
ln
(m
M

)
+O

(
m2

M4
ln

(
M

m

))
which gives the same result as before. But where is Λ?
Introduction of cut-off scale is not necessary (gauge-symmetry).
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dimensional regularization

Let’s introduce regulator k−ε, where ε→ 0.

I1 =

∫ ∞
0

dk k−ε
k

(k2 + m2)M2

(
1−

k2

M2
+

k4

M4
+ · · ·

)
=

1

M2

(
1

ε
− ln m +O(ε)

)

I2 =

∫ ∞
0

dk k−ε
k

k2(k2 + M2)

(
1−

m2

k2
+

m4

k4
+ · · ·

)
=

1

M2

(
−

1

ε
+ ln M +O(ε)

)

Note that both integrals integrates the entire interval. Overlap?
Let R1 = I1 − I1,Λ, R2 = I2 − I2,Λ. Then the overlap region (0-bin):

R =

∫ ∞
Λ

dk k−ε
k

(k2 + m2)M2

(
1−

k2

M2
+ · · ·

)
+

∫ Λ

0

dk k−ε
k

k2(k2 + M2)

(
1−

m2

k2
+ · · ·

)

=

∫ ∞
Λ

dk k−ε
k

k2M2

(
1−

m2

k2
−

k2

M2
+ · · ·

)
+

∫ Λ

0

dk k−ε
k

k2M2

(
1−

m2

k2
−

k2

M2
+ · · ·

)

=

∫ ∞
0

dk k−ε
k

k2M2

(
1−

m2

k2
−

k2

M2
+ · · ·

)
= 0

where we have expanded the denominators into their respective limits.
Regions are localized.
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vertex correction

Consider the one-loop vertex correction (neglect spin, mass)

! k+lF
k

�} k+pF! = iπ−d/2µ4−d
∫

ddk
1

(k2 + i0)[(k + l)2 + i0][(k + p)2 + i0]

where d = 4− 2ε is the dimensional regulator, µ the t’Hooft dimension scale.
One can define the following:

L2 ≡ −l2 − i0, P2 ≡ −p2 − i0, Q2 ≡ −(l − p)2 − i0

Setting L2 ∼ P2 � Q2, we have small invariant mass, but large energy. One can
also define the light-like reference vector:

nµ = (1, 0, 0,+1) and n̄µ = (1, 0, 0,−1)

with n2 = n̄2 = 0, n · n̄ = 2. Then pµ = [n · p, n̄ · p, pµ⊥]
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Regions

Working in the minus-metric, the largest scale is Q, and we define λ to be the
vanishing limit:

λ2 ∼ P2

Q2
∼ L2

Q2

We then have pµ ≈ Qnµ/2 ∼ (λ2, 1, λ)Q, lµ ≈ Qn̄µ/2 ∼ (1, λ2, λ)Q.
Note that the scaling is not unique.

Regions

Hard (h): kµ ∼ (1, 1, 1)Q

Collinear to p (c): kµ ∼ (1, λ2, λ)Q

Collinear to l (c̄): kµ ∼ (λ2, 1, λ)Q

Soft (s): kµ ∼ (λ2, λ2, λ2)Q

We can expand the denominator according to the scales above during integration.
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Hard

The hard region kµ ∼ (1, 1, 1)Q correspond to:

(k + l)2 = k2 + 2k− · l+ +O(λ)

(k + p)2 = k2 + 2k+ · p− +O(λ)

Then

Ih = iπ−d/2
µ

4−d
∫

ddk
1

(k2 + i0)(k2 + 2k− · l+ + i0)(k2 + 2k+ · p− + i0)

=
Γ(1 + ε)

2l+ · p−
Γ2(−ε)

Γ(1− 2ε)

(
µ2

2l+ · p−

)ε

=
Γ(1 + ε)

Q2

(
1

ε2
+

1

ε
ln
µ2

Q2
+

1

2
ln2 µ

2

Q2
−
π2

6

)
+O(ε)

details:[25]

where we have used Feynman parametrization on the denominators.
details:[26]
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Collinear
Region collinear to p:

(k + l)2 = 2k− · l+ +O(λ2), (k + p)2 = O(λ2)

Then the integral:

Ic = iπ−d/2
µ

4−d
∫

ddk
1

(k2 + i0)(2k− · l+ + i0)[(k + p)2 + i0]

= −
Γ(1 + ε)

2l+ · p−
Γ2(−ε)

Γ(1− 2ε)

(
µ2

P2

)ε

=
Γ(1 + ε)

Q2

(
−

1

ε2
−

1

ε
ln
µ2

P2
−

1

2
ln2 µ

2

P2
+
π2

6

)
+O(ε)

Similarly, region collinear to l :

(k + l)2 = O(λ2), (k + p)2 = 2k+ · p− +O(λ2)

Then the integral:

Ic̄ = iπ−d/2
µ

4−d
∫

ddk
1

(k2 + i0)[(k + l)2 + i0](2k+ · p− + i0)

= −
Γ(1 + ε)

2l+ · p−
Γ2(−ε)

Γ(1− 2ε)

(
µ2

L2

)ε

=
Γ(1 + ε)

Q2

(
−

1

ε2
−

1

ε
ln
µ2

L2
−

1

2
ln2 µ

2

L2
+
π2

6

)
+O(ε)
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Soft

Soft Region kµ ∼ (λ2, λ2, λ2)Q:

Is = iπ−d/2
µ

4−d
∫

ddk
1

(k2 + i0)[(2k− · l+ + l2 + i0)(2k+ · p− + p2 + i0)

= −
Γ(1 + ε)

2l+ · p−
Γ(ε)Γ(−ε)

(
2l+ · p−µ2

L2P2

)ε

=
Γ(1 + ε)

Q2

(
1

ε2
+

1

ε
ln
µ2Q2

L2P2
+

1

2
ln2 µ

2Q2

L2P2
+
π2

6

)
+O(ε)

We can check that the overlapping region R vanishes due to scaleless integral in
dimensional regularization.

I = Ih + Ic + Ic̄ + Is

=
1

Q2

(
ln

Q2

L2
ln

Q2

P2
+
π2

3
+O(λ)

)
Note that the IR divergence from hard region cancels with UV divergence from
soft and collinear region.
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general idea

We see that the dynamics of different scales are localized.
- e.g. we don’t need to know the vacuum polarization of bottom quarks in

Hydrogen binding energy. Since E0 = 1
2meα

2
[
1 +O

(
me

mb

)]
The two types of Effective Field Theory:

Top-down:

Physics at high energy scales are
known.

wants to investigate the physics at
low energy

integrate out particles at respective
ranges, build Lagrangian

e.g. NRQCD, SCET...

Bottom-up:

Physics at low energy scales are
known.

wants to investigate the physics at
higher energy

build Lagrangian and assume
degrees of freedom (gauge
symmetry...)

e.g. Standard model, Einstein
(quantum) gravity...
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field decomposition

Consider di-jet production (SCETI ), with hard scale Q, then the components of
the each collinear jet scales as

pµc ∼ (
∆2

Q
,Q,∆) ∼ Q(λ2, 1, λ)

with ΛQCD � ∆� Q collinear. And the component for soft (ultra-soft) jets
scales as

pµs ∼ (
∆2

Q
,

∆2

Q
,

∆2

Q
) ∼ Q(λ2, λ2, λ2)

We can decompose gluon and quark fields into

Aµ(x)→ Aµc (x) + Aµs (x), ψ(x)→ ψc(x) + ψs(x)

with

ψc(x) ≡ ξ(x) + η(x) =
/n/̄n

4
ψc +

/̄n/n

4
ψc ≡ P+ψc + P−ψc

details:[27]
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power counting
We are interested at how the different field components scale. We can investigate
the two point correlator:

〈0|T{ξ(x)ξ̄(0)}|0〉 =

∫
d4p

(2π)4

i

p2 + i0
e−ip·x /n/̄n

4
/p
/̄n/n

4
∼ λ2

〈0|T{η(x)η̄(0)}|0〉 =

∫
d4p

(2π)4

i

p2 + i0
e−ip·x /̄n/n

4
/p
/n/̄n

4
∼ λ4

〈0|T{ψs (x)ψ̄s (0)}|0〉 =

∫
d4p

(2π)4

i/p

p2 + i0
e−ip·x ∼ λ6

〈0|T{Aµ(x)Aν(0)}|0〉 =

∫
d4p

(2π)4

i

p2 + i0
e−ip·x

[
−gµν + ξ

pµpν

p2

]

We see that the gluon fields scales like its momentum. Therefore, we have:

collinear quark: ξ ∼ λ1

collinear quark: η ∼ λ2

soft quark: ψs ∼ λ3

collinear gluon: Ac ∼ (λ2
, λ

0
, λ

1)

soft gluon: As ∼ (λ2
, λ

2
, λ

2)
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Effective Lagrangian
We first look at the following Lagrangian which includes collinear and soft fields:

Lc = ψ̄c i /Dψc = ξ̄
/̄n

2
in · Dξ + ξ̄i /D⊥

1

i n̄ · D
i /D⊥

n̄

2
ξ

Ls = ψ̄s i /Dsψs −
1

4
(F a

s )µν(F a
s )µν

Note that the interaction term are difficult to derive. One can also look at label
formalism (field transformation in momentum space). Also note that since η field
is power suppressed relative to ξ field, we can integrate it out. The general SCET
Lagrangian is in a form:

L(0)
SCET = ψ̄s i /Dsψs + ξ̄

/̄n

2

[
in · D + i /Dc⊥

1

i n̄ · Dc
i /Dc⊥

]
ξ − 1

4
(F s,a
µν )2 − 1

4
(F c,a
µν )2

where the covariant derivative is:

iDµ ≡ i∂µ + gAµ = i∂µ + g(Ac
a
µ + As

a
µ)ta

and the field strength is igFµν = [iDµ, iDν ]. But this is not all...
details:[28]
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Symmetries

So far we have decompose the fields with some basic vector notations and field
redefinitions, forgetting about the symmetries in the original theory. We now
move on to restoring those symmetries in the effective theory in order to move
beyond tree level.

Reparameterization Invariance
To guarantee Lorentz invariance when choosing the vectors n, n̄. One must
investigate the different types of vector transformations on these vectors, and
imply conditions on how to use them.

Gauge Symmetry
To preserve gauge symmetry, one introduce Wilson line along with current
tensor, to provide gauge linking between collinear and soft interactions.

Spin symmetry
One also needs to be careful when defining spinors for the fermion field (to
spin along direction of collinear motion).
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Symmetries

Other important notes:

consider the covariant gauge fixing term for collinear gluon, for it to preserve
soft gauge invariance, the i∂ is replace with iDs which has n̄µ

2 (in · ∂ + gnAs)

gauge transformation is simpler in position space, easier to verify symmetry.
But label formalism which constructs Lagrangian in momentum space is
intuitive in constructing Feynman rules.

keep track of power counting when writing interaction terms between
collinear and soft particles since some components do not contribute to the
transformation.

· · · [see Prof. Christopher lecture]
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Applications and Resources

applications

B-physics
jet physics
Electroweak decay (Higgs, top ...)

resources
Peskin and Schroeder
- Radiative corrections, Renormalization, QCD and OPE
Introduction to Soft-Collinear Effective Theory
- (Becher, Broggio, Ferrolia) arXiv:1410.1892 [hep-ph]
Effective Field Theory
- (Iain Stewart - MIT ocw) iTunes U
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Summary

What we did in QFT course is extremely simplified:
- negligible fermion mass, zero boson mass

Simple, but ineffective QCD Lagrangian.

In high energy colliders, one need to take into account multi-scale problem.

Need to understand divergences:
- types of divergences
- origin of divergences
- how to treat (resum) divergences

Need to have fun in QCD calculations.

Thank You!
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self-energy
We have

Σ2(p) = −ie2
µ

2ε
∫

dnk

(2π)n
γµ(/k + m0)γµ

[k2 − m2
0 + iε][(p − k)2 + iε]

then use Feynman parameter:

1

AB
=

∫ 1

0

dxdyδ(x + y − 1)
1!

(Ax + By)2

Let l ≡ k − py , and ∆ = p2(y2 − y) + m2
0(1− y), then

Σ2(p) = −ie2
µ

2ε
∫ 1

0

dy

∫
dn l

(2π)n
[(2− n)/l + (2− n)/py + nm0]

(l2 −∆ + iε)2

Wick rotate:

∫
dn l

(2π)n

/l

(l2)α
= 0 ,

∫
dn l

(2π)n
1

(l2 −∆ + iε)2
=

i

(4π)n/2

Γ(2− n
2 )

Γ(2)

(
1

∆

)2− n
2

use identity: ∫ 1

0

dx xα−1(1− x)β−1 = B(α, β) =
Γ(α)Γ(β)

Γ(α + β)

return:[7]

Chen Lin (CCNU, IoPP) SCET, an introduction January 12, 2018 24 / 28



Feynman Parametrization

Note that SCET can have propagators which are linear in the loop momentum
from expansions in small momentum components. To combine linear and
quadratic propagators, we can use:

1

ab
=

∫ ∞
0

dy
1

(a + by)2

where a is quadratic and b is linear. Generalizing:

1

a1a2 · · · an
=

n−1∏
1

∫ ∞
i=0

(dyi )
(n − 1)!

(a1 + a2y1 + · · ·+ anyn−1)n
δ(
∑

yi − 1)

For higher power, one can use:

1

anbm
=

Γ(m + n)

Γ(m)Γ(n)

∫ ∞
0

dy
ym−1

(a + yb)n+m

return:[13]
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Details derivation for Ih
applying Feynman parametrization

1

abc
= 2

∫ 1

0

dx

∫ x

0

dy
1

[ay + b(x − y) + c(1− x)]3

Then

Ih = iπ−d/2µ4−d
∫ 1

0

dx

∫ x

0

dy

∫
ddk

2

χ3(x , y , k)

where
χ(x , y , z) = k2 + 2k · [py + l(1− x)] +O(λ)

Using identity (wick rotate):∫
ddk

1

(k2 + 2k · Q −M2)α
= (−1)α

iπd/2

(M2 + Q2)α−d/2

Γ(α− d/2)

Γ(α)

we then have d = 4− 2ε:

Ih =
Γ(1 + ε)

2l+ · p−

(
µ2

2l+ · p−

)ε ∫ 1

0

dx

∫ x

0

dy
1

[y(1− x)]1+ε

=
Γ(1 + ε)

2l+ · p−
Γ2(−ε)

Γ(1− 2ε)

(
µ2

2l+ · p−

)ε
return:[13]
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vector notations

Using the most minus metric, and define the following light vectors:

nµ = (1, 0, 0, 1), n̄µ = (1, 0, 0,−1)

with properties: n2 = n̄2 = 0, n · n̄ = 2. Then we can decompose

pµ = pµ+ + pµ− + pµ⊥ =

[
(n · p)

n̄µ

2
+ (n̄ · p)

nµ

2
+ pµ⊥

]
and its square p2 = (n · p)(n̄ · p)− p2

T . With these vectors, the integration over
momentum space is given by:∫

ddk =
1

2

∫ +∞

−∞
dk+

∫ +∞

−∞
dk−

∫
dd−2k⊥∫

ddkδ(k2)θ(k0) =
1

2

∫ ∞
0

dk+

∫ ∞
0

dk−

∫
dd−2k⊥δ(k+k− − k2

T )

return:[17]
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effective Lagrangian
The Lagrangian is constructed directly in position space using multipole expansion. But we can also use a
hybrid position-momentum-space formalism called label formalism, which is similar to heavy quark effective
theory. and decompose the momentum as pµ = pµl + pµr , with pl discrete and pr continuous, and the

summation is done by
∫
d4p =

∑
pl 6=0

∫
d4pr and the field transform as:

ξ̂n(x) =
∑
pl 6=0

∫
d4pr

(2π)4
e−ipl ·xe−ipr ·xξn,pl (pr ) = e−iP·x

ξn(x)

with P the momentum operator. The collinear Lagrangian:

Lc = ψ̄c i /Dψc = (ξ̄ + η̄)

[
/n

2
i n̄ · D +

/̄n

2
in · D + i /D⊥

]
(ξ + η)

= ξ̄
/̄n

2
in · Dξ + ξ̄i /D⊥η + η̄i /D⊥ξ + η̄

/n

2
i n̄ · Dη

where /nξ, ξ̄/n, /̄nη, η̄/̄n, ξ̄ /D⊥ξ, η̄ /D⊥η terms vanishes. Since η is power suppressed, we can integrate it out

using the equation of motion (− ∂L
∂ξ̄

= 0) and solve for η in terms of ξ, then using the identities {/̄n, /D⊥} = 0

and P+ /D⊥ξ = /D⊥P+ξ = /D⊥ξ to obtain the collinear Lagrangian.
We can see that the path integral:∫

D[η]D[η̄]exp

[∫
d4x η̄

/n

2
i n̄ · Dη

]
= det

(
/n

2
i n̄ · D

)
can be proven to be gauge independent, thus η can be integrated out.
return:[19]
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