Freeze-out Hypersurface Calculation

Wuxiangyu

Outline

- Introduction
- Direct Method
- Intersection Method
- Projection Method

Introduction

Cooper-Frye formula
$E \frac{d N_{i}}{d^{3} P}=\frac{d N_{i}}{d Y p_{T} d p_{T} d \phi}=\frac{g_{h}}{(2 \pi)^{3}} \int_{\Sigma} P^{\mu} d \Sigma_{\mu} f_{h}(x, p)$
where $d \Sigma_{\mu}$ is the normal vector of a small piece of freeze-out hypersurface, and Σ is a 3 D hyper-surface in the 4 D space and time.

Thermal distribution at freeze-out temperature T_{f}

$$
f(p \cdot u)=\frac{1}{e^{\left(\left(p \cdot u-u_{i}\right) / T_{f}\right)} \pm 1}
$$

\pm : ferminons and bosons
u : flow velocity
All resonnances are assumed to freeze out from the same surface and decay into stable particles.

Introduction

The invariant energy of particle

$$
E=p \cdot u=u^{\tau}\left[m_{T} \cosh \left(Y-\eta_{s}\right)-\vec{p}_{\perp} \cdot \vec{v}_{\perp}-v_{\eta} m_{T} \sinh \left(Y-\eta_{s}\right)\right]
$$

The normal vector for one piece of freeze-out hypersurface

$$
d \Sigma_{\mu}=\left(\tau_{f} d x d y d \eta_{s},-\tau_{f} d \tau d y d \eta_{s},-\tau_{f} d \tau d x d \eta_{s},-d \tau d x d y\right)
$$

Four-momentum

$$
P^{\mu}=\left(m_{T} \cosh \left(Y-\eta_{s}\right), \vec{P}_{T}, \frac{m_{T} \sinh \left(Y-\eta_{s}\right)}{\tau}\right)
$$

$$
\begin{aligned}
P^{\mu} d \Sigma_{\mu}= & \left(m_{T} \cosh \left(Y-\eta_{s}\right) \tau d x d y d \eta_{s}-P_{T} \cos \phi \tau d x d y d \eta_{s}\right. \\
& \left.-P_{T} \sin \phi \tau d x d y d \eta_{s}-m_{T} \sinh \left(Y-\eta_{s}\right) d \tau d x d y\right)
\end{aligned}
$$

So we can calculate all observables accoroding to $\frac{d N_{i}}{d Y p_{T} d p_{T} d \phi}$

Direct Method

The normal vector

$$
d \Sigma_{\mu}=\left(\tau_{f} d x d y d \eta_{s},-\tau_{f} d \tau d y d \eta_{s},-\tau_{f} d \tau d x d \eta_{s},-d \tau d x d y\right)
$$

Finite grid sizes $\Delta \tau, \Delta x, \Delta y$, and $\Delta \eta_{s}$ are used to calculate $\mathrm{d} \Sigma_{\mu}$
In the τ-direction, a cuboidal volume $d \Sigma_{\tau}=\tau_{f} d x d y d \eta_{s}$ is recorded when the freeze-out temperature falls between $\mathrm{T}\left(\tau_{\mathrm{n}}, \mathrm{x}, \mathrm{y}, \eta_{\mathrm{s}}\right)$ and $\mathrm{T}\left(\tau_{\mathrm{n}+1}, \mathrm{x}, \mathrm{y}, \eta_{\mathrm{s}}\right)$

In every direction, the surface is independent
norm vector \rightarrow low energy
freeze-out time and 4-velocity
\rightarrow Interpolation $\tau_{\mathrm{n}}-\tau_{\mathrm{n}+1}$

Direct Method

$$
\begin{aligned}
& \text { if }\left(E_{\text {dec }}-E_{0}(i, j, k)\right)\left(E_{1}(i, j, k)-E_{d e c}\right)<0 \text {, then } d \Sigma_{0}=\text { sign } * \tau d x d y d \eta_{s} . \\
& \text { if }\left(E_{\text {dec }}-E_{0}(i, j, k)\right)\left(E_{0}(i+1, j, k)-E_{\text {dec }}\right)<0 \text {, then } d \Sigma_{1}=\operatorname{sign} * \tau d \tau d y d \eta_{s} . \\
& \text { if }\left(E_{\text {dec }}-E_{0}(i, j, k)\right)\left(E_{0}(i, j+1, k)-E_{\text {dec }}\right)<0 \text {, then } d \Sigma_{2}=\text { sign } * \tau d \tau d x d \eta_{s} . \\
& \text { if }\left(E_{\text {dec }}-E_{0}(i, j, k)\right)\left(E_{0}(i, j, k+1)-E_{\text {dec }}\right)<0 \text {, then } d \Sigma_{3}=\text { sign } * d \tau d x d y .
\end{aligned}
$$

Note: the dreaction to be towards to the lowe energy density

$$
\begin{aligned}
& \text { if }\left(E_{\text {dec }}-E_{0}(i, j, k)\right)>0 \text {, then } \operatorname{sign}=1 ; \text { else } \operatorname{sign}=-1 \text { for } d \Sigma_{0} \\
& \text { if }\left(E_{\text {dec }}-E_{0}(i, j, k)\right)>0 \text {, then } \operatorname{sign}=-1 ; \text { else } \operatorname{sign}=1 \text { for } d \Sigma_{1}, d \Sigma_{2}, d \Sigma_{3}
\end{aligned}
$$

Intersection Method

Hyper surface \rightarrow smaller pieces

The area S of one piece of hyper surface inside an interpolation cube is approximated by the summation of the areas of a group of trangles.

$$
S=\sum_{\mathrm{i}=1}^{N} \Delta O s_{i} s_{i+1}
$$

Once know center point O and two neighboring intersections, the normal vector:

$$
\vec{V}_{\text {norm }}^{2+1 D}=\frac{1}{2}\left|\begin{array}{ccc}
n & i & j \\
A_{0} & A_{1} & A_{2} \\
B_{0} & B_{1} & B_{2}
\end{array}\right|=n d \Sigma_{0}+i d \Sigma_{1}+j d \Sigma_{2}
$$

Intersection Method

Step 1: Find all the intersection points on the cube
Note the distence between the middle points of two edges has 4 different values $(\sqrt{0.5}, 1, \sqrt{1.5}, \sqrt{2})$, larger than or equal to $\sqrt{1.5}$, the weight is 0 .

Step2: Intersections are ordered in to a circular sequence.

For intersection A, collect all adjacent edges that contain one intersection point. Find the edges that is closest to the edges which have been ordered.

Step3: Calculate hypersurface.

Acoording to the $\overrightarrow{P_{1} M}$ and $\overrightarrow{P_{1} P_{2}}$, calculate the area of the triangle $\Delta P_{1} P_{2} M$

Projection Method

Aussmption: Only one intersection on a edge.
Step 1: Determine a cube, label every edge and corners.

Step 2: Identify intersection points whenever energy difference ε - $\varepsilon_{\mathrm{fr}}$ changes sign between two gird points. (Only consider the diagonal corners.)

$$
\begin{aligned}
& \left(E_{\text {dec }}-E_{0}(i, j, k)\right)\left(E_{1}(i+d i, j+d j, k+d k)-E_{\text {dec }}\right)<0 \quad \text { and } \\
& \left(E_{\text {dec }}-E_{0}(i+d i, j, k)\right)\left(E_{1}(i, j+d j, k+d k)-E_{d e c}\right)<0 \quad \text { and } \\
& \left(E_{\text {dec }}-E_{0}(i, j+d j, k)\right)\left(E_{1}(i+d i, j, k+d k)-E_{d e c}\right)<0 \quad \text { and } \\
& \left(E_{\text {dec }}-E_{0}(i, j, k+d k)\right)\left(E_{1}(i+d i, j+d j, k)-E_{d e c}\right)<0 \text { then intersection=True }
\end{aligned}
$$

Step 3: Identify the energy direction which towards the low energy. $V H_{i}=\frac{\sum_{i=i+\Delta i}\left(E_{i}-E_{f r}\right)}{\sum\left(E_{i}-E_{f r}\right)}, i=\tau, x, y$, when $E_{i}-E_{f r}>0 \quad V L_{i}=\frac{\sum_{i=i+\Delta i}\left(E_{i}-E_{f r}\right)}{\sum\left(E_{i}-E_{f r}\right)}, i=\tau, x, y$, when $E_{i}-E_{f r}<0$
Energy flow vector $\quad \vec{V}_{E}=\overrightarrow{V L}-\overrightarrow{V H}$

Projection Method

Step 4: Calculate the position of intersection by linear Interpolation at every edge. Meanwhile, calculate the position of center of mass of all intersection.

Step 5: Calculate the velocity through intersection by 3D interpolation.

[^0]Secondly, do the interpolation along x direaction to calculate $\mathrm{F}(\mathrm{x}, \mathrm{y})$ acoording to F(x,1) ,F(y,1)

$$
f(x, y)=f(0,0)(1-x)(1-y)+f(1,0) x(1-y)+f(0,1)(1-x) \mathrm{y}+\mathrm{f}(1,1) \mathrm{xy}
$$

This interpolation easily extend to N-D interpolation.

$$
\begin{aligned}
f(x, y, z) & =f(0,0,0)(1-x)(1-y)(1-z)+f(1,0,0) x(1-y)(1-z)+f(0,1,0)(1-x) \mathrm{y}(1-z)+\mathrm{f}(0,0,1)(1-x)(1-y) z \\
& +f(1,1,0) x y(1-z)+f(1,0,1) x(1-y) z+f(0,1,1)(1-x) \mathrm{y} z+\mathrm{f}(1,1,1) x y z
\end{aligned}
$$

Projection Method

Step 6：Calculate the hypersurface．
Step 6．1 If $\mathrm{N}_{\text {int }}=3$ intersections，then calculate the area of one piece of hypersurface．

$$
\vec{V}_{n o r m}^{2+1 D}=\frac{1}{2}\left|\begin{array}{ccc}
n & i & j \\
A_{0} & A_{1} & A_{2} \\
B_{0} & B_{1} & B_{2}
\end{array}\right|=n d \Sigma_{0}+i d \Sigma_{1}+j d \Sigma_{2}
$$

Identify sign acoording to $\overrightarrow{V_{\text {norm }}} \cdot \overrightarrow{V_{E}}>0$
Step 6．2 If $\mathrm{N}_{\text {int }}=4$ intersections，select any 4 intersections $\mathrm{s}_{\mathrm{i}=0.1,2,3}$ to construct a tetrahedron（四面体）．

Projection Method
Step 6．3 Consider the norm vector on $\Delta \mathrm{S}_{0} \mathrm{~S}_{1} \mathrm{~S}_{3}$ and out vector for S_{2} ，choose the outward normal normal vector that satisfies $\overrightarrow{V_{\text {nom }}} \cdot \overrightarrow{V_{\text {out }}}>0$

Step 6．4 Then order the intersections on $\Delta \mathrm{S}_{0} \mathrm{~S}_{1} \mathrm{~S}_{3}$

Projection Method

Step 6．5 If $\mathrm{N}_{\text {int }}>5$ intersections，do step 6．1－6．5 firstly．Consider another intersection Si outside the first tetrahedron（四面体）．Outside condition： $\overrightarrow{V_{\text {norm }}} \cdot \overrightarrow{O S_{i}}<0$

Step 6．6 Find all possible outside intersections．

Step 6．7 Construct a new tetrahedron between S_{i} and each of these triangles．And remove the inner surface．

Step 6．8 Compare all new tetrahedron，remove the inner surface acoording to the order of intersection of one surface．
Step 6．9 Sum all the hypersurface，identify sign acoording to $\overrightarrow{V_{\text {norm }}} \cdot \overrightarrow{V_{E}}>0$

Thank for your listening.

[^0]: Firstly, do the interpolation along x direaction to calculate $F(x, 1)$ and $F(y, 1)$ acoording to $\mathrm{F}(0,0), \mathrm{F}(0,1), \mathrm{F}(1,0), \mathrm{F}(1,1)$

