Weihai High Energy Physics School

Introduction to Quantum Chromodynamics (QCD)

Jianwei Qiu August 16 – 19, 2018 Four Lectures

The 3rd WHEPS, August 16-24, 2018, Weihai, Shandong

Physical Observables

Cross sections with identified hadrons are non-perturbative!

Hadronic scale ~ 1/fm ~ 200 MeV is not a perturbative scale

Purely infrared safe quantities

Observables with a lot of hadrons, but, without specifically identified hadron(s)

Identified hadrons – QCD factorization

Fully infrared safe observables

 $\sigma_{e^+e^- \to \rm hadrons}^{\rm total}$

Fully inclusive with a lot of hadrons, but, without any specifically identified hadron(s) in terms of particle type and momentum!

QCD:
$$\sigma_{e^+e^- \rightarrow \text{hadrons}}^{\text{total}} = \sigma_{e^+e^- \rightarrow \text{partons}}^{\text{total}}$$

The simplest observable in QCD!

BESIII can measure it with precision

Fully infrared safe observables

with phase space constraints

Sufficiently inclusive with a lot of hadrons, but, without any specifically identified hadron(s) in terms of particle type or nambers!

QCD:
$$\sigma_{e^+e^- \rightarrow \text{hadrons}}^{\text{Jets}} \approx \sigma_{e^+e^- \rightarrow \text{partons}}^{\text{Jets}}$$

Jets – "trace" of energetic partons

Other examples: Thrust distribution in e⁺e⁻ collisions, etc.

Jets – trace of partons

- Jets "total" cross-section with a limited phase-space Not any specific hadron!
- Q: will IR cancellation be completed?
 - Leading partons are moving away from each other
 - ♦ Soft gluon interactions should not change the direction of an energetic parton → a "jet" – "trace" of a parton
- Many Jet algorithms

Jet finding algorithms – Not unique!

□ Jet definition – how to combine particles into a jet

- ♦ Recombination algorithms (almost all e+e- cases):
 - **Recombination metric:** $y_{ij} = \frac{M_{ij}^2}{E_{c.m.}^2}$ $M_{ij}^2 = 2\min(E_i^2, E_j^2)(1 - \cos \theta_{ij})$
 - Combine particle pair (i, j) with the smallest y_{ij} : $(i, j) \rightarrow k$ e.g. E scheme : $p_k = p_i + p_j$

Cone jet algorithms (CDF, ..., colliders):

- Cluster all particles into a cone of half angle R to form a jet:
- Recombination metric: $d_{ij} = \min\left(k_{T_i}^{2p}, k_{T_j}^{2p}\right) \frac{\Delta_{ij}^2}{R^2}$ $\Delta_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2$
- Classical choices:

" k_T algorithm" (p = 1), "anti- k_T " (p = -1), ...

- Require a minimum visible jet energy: $E_{jet} > \epsilon$
- Particle could be outside the "cone"

Infrared safety for restricted cross sections

\Box For any observable with a phase space constraint, Γ ,

$$d\sigma(\Gamma) = \frac{1}{2!} \int d\Omega_2 \frac{d\sigma^{(2)}}{d\Omega_2} \Gamma_2(k_1, k_2)$$

+
$$\frac{1}{3!} \int d\Omega_3 \frac{d\sigma^{(3)}}{d\Omega_3} \Gamma_3(k_1, k_2, k_3)$$

+
$$\dots$$

+
$$\frac{1}{n!} \int d\Omega_n \frac{d\sigma^{(n)}}{d\Omega_n} \Gamma_n(k_1, k_2, \dots, k_n) + \dots$$

Where $\Gamma_n(k_1, k_2, ..., k_n)$ are constraint functions and invariant under Interchange of n-particles

Conditions for IRS of d σ (Γ):

$$\Gamma_{n+1}\left(k_1, k_2, \dots, (1-\lambda)k_n^{\mu}, \lambda k_n^{\mu}\right) = \Gamma_n\left(k_1, k_2, \dots, k_n^{\mu}\right) \quad \text{with} \quad 0 \le \lambda \le 1$$

Physical meaning:

Ι

Measurement cannot distinguish a state with a zero/collinear momentum parton from a state without the parton

Special case: $\Gamma_n(k_1, k_2, ..., k_n) = 1$ for all $n \Rightarrow \sigma^{(tot)}$

Two-jet cross section in e+e- collisions

□ Parton-Model = Born term in QCD:

$$\sigma_{2\text{Jet}}^{(\text{PM})} = \frac{3}{8}\sigma_0 \left(1 + \cos^2\theta\right)$$

□ Two-jet in pQCD:

$$\sigma_{2\text{Jet}}^{(\text{pQCD})} = \frac{3}{8} \sigma_0 \left(1 + \cos^2 \theta \right) \left(1 + \sum_{n=1}^{\infty} C_n \left(\frac{\alpha_s}{\pi} \right) \right)$$

with $C_n = C_n \left(\delta \right)$

□ Sterman-Weinberg jet:

$$\sigma_{2\text{Jet}}^{(\text{pQCD})} = \frac{3}{8} \sigma_0 \left(1 + \cos^2 \theta \right)$$

$$\mathbf{x} \left[1 - \frac{4}{3} \frac{\alpha_s}{\pi} \left(4 \ln(\delta) \ln(\delta') + 3 \ln(\delta) + \frac{\pi^2}{3} + \frac{5}{2} \right) \right] \boldsymbol{\mathcal{E}}_1$$

 $\sigma_{\text{total}} = \sigma_{2\text{Jet}} \quad \text{as} \quad Q \to \infty$

$$\delta \qquad E_2 \\ \theta \\ \epsilon \sqrt{s} = \delta, \quad Z\text{-axis} \\ E_1 \\ \text{Sterman-Weinberg Jet}$$

An early clean two-jet event

LEP (
$$\sqrt{s} = 90 - 205$$
 GeV)

Discovery of a gluon jet

First order in QCD ($\mathcal{O}(\alpha^2 \alpha_s^1)$): PETRA e⁺e⁻ storage ring at DESY: $E_{c.m.} \gtrsim 15$ GeV α, TASSO γ/Z 4 trocks 6 tracks 4.3 GeV 4.1 GeV Jet **Reputed to be the first** three-jet event from TASSO TASSO Collab., Phys. Lett. <u>B86</u> (1979) 243 MARK-J Collab., Phys. Rev. Lett. <u>43</u> (1979) 830 4 tracks PLUTO Collab., Phys. Lett. <u>B86</u> (1979) 418 7.8 GeV JADE Collab., Phys. Lett. B91 (1980) 142

Tagged three-jet event from LEP

Thrust distribution

□ Phase space constraint:

$$\frac{d\sigma_{e^+e^- \to \text{hadrons}}}{dT} \quad \text{with} \quad \Gamma_n\left(p_1^{\mu}, p_2^{\mu}, ..., p_n^{\mu}\right) = \delta\left(T - T_n\left(p_1^{\mu}, p_2^{\mu}, ..., p_n^{\mu}\right)\right)$$

♦ Contribution from p=0 particles drops out the sum

 Replace two collinear particles by one particle does not change the thrust

and
$$|(1 - \lambda) \vec{p}_n \cdot \vec{u}| + |\lambda \vec{p}_n \cdot \vec{u}| = |\vec{p}_n \cdot \vec{u}|$$
$$|(1 - \lambda) \vec{p}_n| + |\lambda \vec{p}_n| = |\vec{p}_n|$$

N-Jettiness

Event structure:

 $pp \rightarrow$ leptons plus jets.

□ N-Jettiness:

(Stewart, Tackmann, Waalewijin, 2010)

$$\tau_N = \sum_k \min_i \left\{ \frac{2q_i \cdot p_k}{Q_i} \right\}$$

The sum include all final-state hadrons *excluding* more than N jets

Allows for an event-shape based analysis of multi-jets events (a generalization of Thrust)

□ N-infinitely narrow jets (jet veto):

As a limit of N-Jettiness: $au_N o 0$

Generalization of the thrust distribution in e⁺e⁻ initial-state identified hadron!

The harder question

Question:

How to test QCD in a reaction with identified hadron(s)? – to probe the quark-gluon structure of the hadron

□ Facts:

Hadronic scale ~ 1/fm ~ Λ_{QCD} is non-perturbative

Cross section involving identified hadron(s) is not IR safe and is NOT perturbatively calculable!

- □ Solution Factorization:
 - \diamond Isolate the calculable dynamics of quarks and gluons
 - Connect quarks and gluons to hadrons via non-perturbative but universal distribution functions

- provide information on the partonic structure of the hadron

Observables with ONE identified hadron

Cross section is infrared divergent, and nonperturbative! QCD factorization (approximation!)

Pinch singularity and pinch surface

Hard collisions with identified hadron(s)

Hard collisions with identified hadron(s)

Hard collisions with identified hadron(s)

Inclusive lepton-hadron DIS – one hadron

□ Scattering amplitude:

$$M(\lambda, \lambda'; \sigma, q) = \overline{u}_{\lambda'}(k') \left[-ie\gamma_{\mu}\right] u_{\lambda}(k)$$

$$* \left(\frac{i}{q^{2}}\right) \left(-g^{\mu\mu'}\right)$$

$$* \langle X|eJ_{\mu'}^{em}(0)|p,\sigma\rangle$$

Cross section:

$$d\sigma^{\text{DIS}} = \frac{1}{2s} \left(\frac{1}{2}\right)^{2} \sum_{X} \sum_{\lambda,\lambda,\sigma} \left| M(\lambda,\lambda';\sigma,q) \right|^{2} \left[\prod_{i=1}^{X} \frac{d^{3}l_{i}}{(2\pi)^{3} 2E_{i}} \right] \frac{d^{3}k'}{(2\pi)^{3} 2E'} (2\pi)^{4} \delta^{4} \left(\sum_{i=1}^{X} l_{i} + k' - p - k \right) \right]$$
$$\sum_{i=1}^{N} \frac{d\sigma^{\text{DIS}}}{d^{3}k'} = \frac{1}{2s} \left(\frac{1}{Q^{2}}\right)^{2} L^{\mu\nu}(k,k') W_{\mu\nu}(q,p)$$

Leptonic tensor:

– known from QED

$$L^{\mu\nu}(k,k') = \frac{e^2}{2\pi^2} \left(k^{\mu} k^{\nu} + k^{\nu} k^{\mu} - k \cdot k^{\nu} g^{\mu\nu} \right)$$

DIS structure functions

□ Hadronic tensor:

$$W_{\mu\nu}(q,p,\mathbf{S}) = \frac{1}{4\pi} \int d^4 z \, \mathrm{e}^{iq \cdot z} \, \left\langle p, \mathbf{S} \left| J^{\dagger}_{\mu}(z) J_{\nu}(0) \right| p, \mathbf{S} \right\rangle$$

Symmetries:

♦ Parity invariance (EM current) → $W_{\mu\nu} = W_{\nu\mu}$ sysmetric for spin avg.
♦ Time-reversal invariance → $W_{\mu\nu} = W_{\mu\nu}^*$ real
♦ Current conservation → $q^{\mu}W_{\mu\nu} = q^{\nu}W_{\mu\nu} = 0$

$$\begin{split} W_{\mu\nu} &= -\left(g_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{q^{2}}\right)F_{1}\left(x_{B},Q^{2}\right) + \frac{1}{p \cdot q}\left(p_{\mu} - q_{\mu}\frac{p \cdot q}{q^{2}}\right)\left(p_{\nu} - q_{\nu}\frac{p \cdot q}{q^{2}}\right)F_{2}\left(x_{B},Q^{2}\right) \\ &+ iM_{p}\varepsilon^{\mu\nu\rho\sigma}q_{\rho}\left[\frac{S_{\sigma}}{p \cdot q}g_{1}\left(x_{B},Q^{2}\right) + \frac{(p \cdot q)S_{\sigma} - (S \cdot q)p_{\sigma}}{(p \cdot q)^{2}}g_{2}\left(x_{B},Q^{2}\right)\right] \qquad Q^{2} = -q^{2} \\ &x_{B} = \frac{Q^{2}}{2p \cdot q} \end{split}$$

□ Structure functions – infrared sensitive:

$$F_1(x_B,Q^2), F_2(x_B,Q^2), g_1(x_B,Q^2), g_2(x_B,Q^2)$$

No QCD parton dynamics used in above derivation!

Long-lived parton states

Feynman diagram representation of the hadronic tensor:

Perturbative factorization:

 $k^{\mu} = xp^{\mu} + \frac{k^{2} + k_{T}^{2}}{2xp \cdot n}n^{\mu} + k_{T}^{\mu}$ Nonperturbative matrix element $\int \frac{dx}{x} d^{2}k_{T} \operatorname{H}(Q, k^{2} = 0) \int dk^{2} \left(\frac{1}{k^{2} + i\varepsilon}\right) \left(\frac{1}{k^{2} - i\varepsilon}\right) \operatorname{T}(k, \frac{1}{r_{0}}) + \mathcal{O}\left(\frac{\langle k^{2} \rangle}{Q^{2}}\right)$ Short-distance

Collinear factorization – further approximation

Collinear approximation, if $Q \sim xp \cdot n \gg k_T, \sqrt{k^2}$

Parton's transverse momentum is integrated into parton distributions, and provides a scale of power corrections

 \Box DIS limit: $\nu, Q^2 \rightarrow \infty$, while x_B fixed

Feynman's parton model and Bjorken scaling $F_2(x_B, Q^2) = x_B \sum_f e_f^2 \phi_f(x_B) = 2x_B F_1(x_B, Q^2)$ **Spin-1**/₂ parton! **Corrections:** $\mathcal{O}(\alpha_s) \stackrel{f}{+} \mathcal{O}\left(\langle k^2 \rangle / Q^2\right)$

Parton distribution functions (PDFs)

PDFs as matrix elements of two parton fields: – combine the amplitude & its complex-conjugate

$$\phi_{q/h}(x,\mu^2) = \int \frac{p^+ dy^-}{2\pi} e^{ixp^+y^-} \langle h(p) | \bar{\psi}_q(0) \frac{\gamma^+}{2p^+} \psi_q(y^-) | h(p) \rangle \mathcal{Z}_{\mathcal{O}}(\mu^2)$$

$$|h(p)\rangle \quad \text{can be a hadron, or a nucleus, or a parton state!}$$

But, it is NOT gauge invariant! $\psi(x) \to e^{i\alpha_a(x)t_a}\psi(x) \quad \bar{\psi}(x) \to \bar{\psi}(x)e^{-i\alpha_a(x)t_a}\psi(x)$

- need a gauge link:

$$\phi_{q/h}(x,\mu^2) = \int \frac{dy^-}{2\pi} e^{ixp^+y^-} \langle h(p) | \bar{\psi}_q(0) \left[\mathcal{P}e^{-ig \int_0^{y^-} d\eta^- A^+(\eta^-)} \right] \frac{\gamma^+}{2p^+} \psi_q(y^-) | h(p) \rangle \mathcal{Z}_{\mathcal{O}}(\mu^2)$$

- corresponding diagram in momentum space:

Universality – process independence – predictive power

Gauge link – 1st order in coupling "g"

□ Longitudinal gluon:

□ Left diagram:

$$\int dx_1 \left[\int \frac{p^+ dy_1^-}{2\pi} e^{ix_1 p^+ (y_1^- - y^-)} n \cdot A^a(y_1^-) \right] \mathcal{M}(-igt^a) \frac{\gamma \cdot p}{p^+} \frac{i((x - x_1 - x_B)\gamma \cdot p + (Q^2/2x_B p^+)\gamma \cdot n)}{(x - x_1 - x_B)Q^2/x_B + i\epsilon}$$
$$= g \int \frac{dy_1^-}{2\pi} n \cdot A^a(y_1^-) t^a \left[\int dx_1 \frac{1}{-x_1 + i\epsilon} e^{ix_1 p^+ (y_1^- - y^-)} \right] \mathcal{M} = -ig \int_{y^-}^{\infty} dy_1^- n \cdot A(y_1^-) \mathcal{M}$$

Right diagram:

$$\int dx_1 \left[\int \frac{p^+ dy_1^-}{2\pi} e^{ix_1 p^+ y_1^-} n \cdot A^a(y_1^-) \right] \frac{-i((x + x_1 - x_B)\gamma \cdot p + (Q^2/2x_B p^+)\gamma \cdot n)}{(x + x_1 - x_B)Q^2/x_B - i\epsilon} (+igt^a) \frac{\gamma \cdot p}{p^+} \mathcal{M}$$
$$= g \int \frac{dy_1^-}{2\pi} n \cdot A^a(y_1^-) t^a \left[\int dx_1 \frac{1}{x_1 - i\epsilon} e^{ix_1 p^+ y_1^-} \right] \mathcal{M} = ig \int_0^\infty dy_1^- n \cdot A(y_1^-) \mathcal{M}$$

□ Total contribution:

$$-ig\left[\int_0^\infty - \int_{y^-}^\infty\right] dy_1^- n \cdot A(y_1^-) \mathcal{M}_{\rm LO}$$

O(g)-term of the gauge link!

QCD high order corrections

□ NLO partonic diagram to structure functions:

Diagram has both long- and short-distance physics

□ Factorization, separation of short- from long-distance:

QCD leading power factorization

Logarithmic contributions into parton distributions:

 \Box Factorization scale: μ

To separate the collinear from non-collinear contribution

Recall: renormalization scale to separate local from non-local contribution

Picture of factorization for DIS

□ Unitarity – summing over all hard jets:

Interaction between the "past" and "now" are suppressed!

Evolution

Physical cross sections should not depend on the factorization scale $\mu_F^2 \frac{d}{d\mu_F^2} F_2(x_B, Q^2) = 0$ $F_2(x_B, Q^2) = \sum C_f(x_B/x, Q^2/\mu_F^2, \alpha_s) \phi_f(x, \mu_F^2)$ **Evolution (differential-integral) equation for PDFs** $\sum_{f} \left| \boldsymbol{\mu}_{F}^{2} \frac{d}{d\boldsymbol{\mu}_{F}^{2}} C_{f} \left(\frac{x_{B}}{x}, \frac{Q^{2}}{\boldsymbol{\mu}_{F}^{2}}, \alpha_{s} \right) \right| \otimes \boldsymbol{\varphi}_{f} \left(x, \boldsymbol{\mu}_{F}^{2} \right) + \sum_{f} C_{f} \left(\frac{x_{B}}{x}, \frac{Q^{2}}{\boldsymbol{\mu}_{F}^{2}}, \alpha_{s} \right) \otimes \boldsymbol{\mu}_{F}^{2} \frac{d}{d\boldsymbol{\mu}_{F}^{2}} \boldsymbol{\varphi}_{f} \left(x, \boldsymbol{\mu}_{F}^{2} \right) = 0$ PDFs and coefficient functions share the same logarithms $\log(\mu_F^2/\mu_0^2)$ or $\log(\mu_F^2/\Lambda_{\rm QCD}^2)$ **PDFs**: $\log(Q^2/\mu_F^2)$ or $\log(Q^2/\mu^2)$ **Coefficient functions:**

 $\mu_F^2 \frac{\partial}{\partial \mu_F^2} \varphi_i(x, \mu_F^2) = \sum_j P_{i/j}\left(\frac{x}{x'}, \alpha_s\right) \otimes \varphi_j(x', \mu_F^2)$

DGLAP evolution equation:

From one hadron to two hadrons

Drell-Yan process – two hadrons

Drell-Yan mechanism:

S.D. Drell and T.-M. Yan Phys. Rev. Lett. 25, 316 (1970)

 $A(P_A) + B(P_B) \rightarrow \gamma^*(q) [\rightarrow l\bar{l}(q)] + X$ with $q^2 \equiv Q^2 \gg \Lambda_{\rm QCD}^2 \sim 1/{\rm fm}^2$

Lepton pair – from decay of a virtual photon, or in general, a massive boson, e.g., W, Z, H⁰, ... (called Drell-Yan like processes)

□ Original Drell-Yan formula:

Beyond the lowest order:

- Soft-gluon interaction takes place all the time
- Long-range gluon interaction before the hard collision

Break the Universality of PDFs
 Loss the predictive power

□ Factorization – power suppression of soft gluon interaction:

□ Factorization – approximation:

Collins, Soper, Sterman, 1988

♦ Suppression of quantum interference between short-distance (1/Q) and long-distance (fm ~ 1/ Λ_{QCD}) physics

Need "long-lived" active parton states linking the two

$$\int d^4 p_a \, \frac{1}{p_a^2 + i\varepsilon} \, \frac{1}{p_a^2 - i\varepsilon} \to \infty$$

Perturbatively pinched at $p_a^2 = 0$

Active parton is effectively on-shell for the hard collision

 Maintain the universality of PDFs:
 Long-range soft gluon interaction has to be power suppressed

♦ Infrared safe of partonic parts:

Cancelation of IR behavior Absorb all CO divergences into PDFs

Backup slides for more details

Factorized Drell-Yan cross section

 \Box TMD factorization ($q_{\perp} \ll Q$):

 $\frac{d\sigma_{AB}}{d^4q} = \sigma_0 \int d^2 k_{a\perp} d^2 k_{b\perp} d^2 k_{s\perp} \delta^2 (q_\perp - k_{a\perp} - k_{b\perp} - k_{s\perp}) \mathcal{F}_{a/A}(x_A, k_{a\perp}) \mathcal{F}_{b/B}(x_B, k_{b\perp}) \mathcal{S}(k_{s\perp})$ $+ \mathcal{O}(q_\perp/Q) \qquad x_A = \frac{Q}{\sqrt{s}} e^y \qquad x_B = \frac{Q}{\sqrt{s}} e^{-y}$

The soft factor, $\ {\cal S}$, is universal, could be absorbed into the definition of TMD parton distribution

 \Box Collinear factorization ($q_{\perp} \sim Q$):

 $\frac{d\sigma_{AB}}{d^4q} = \int dx_a f_{a/A}(x_a,\mu) \int dx_b f_{b/B}(x_b,\mu) \frac{d\hat{\sigma}_{ab}}{d^4q}(x_a,x_b,\alpha_s(\mu),\mu) + \mathcal{O}(1/Q)$

□ Spin dependence:

The factorization arguments are independent of the spin states of the colliding hadrons

same formula with polarized PDFs for $\gamma^*, W/Z, H^0...$

Factorization for more than two hadrons

How to calculate the perturbative parts?

\Box Use DIS structure function F_2 as an example:

$$F_{2h}(x_B, Q^2) = \sum_{q, f} C_{q/f}\left(\frac{x_B}{x}, \frac{Q^2}{\mu^2}, \alpha_s\right) \otimes \varphi_{f/h}\left(x, \mu^2\right) + O\left(\frac{\Lambda_{\text{QCD}}^2}{Q^2}\right)$$

 \diamond Apply the factorized formula to parton states: $h \rightarrow q$

Feynman
diagrams
$$F_{2q}(x_B, Q^2) = \sum_{q,f} C_{q/f}\left(\frac{x_B}{x}, \frac{Q^2}{\mu^2}, \alpha_s\right) \otimes \varphi_{f/q}\left(x, \mu^2\right)$$
 \leftarrow Feynman
diagrams

 \diamond Express both SFs and PDFs in terms of powers of α_s :

Partonic cross sections – LO

□ Projection operators for SFs:

$$W_{\mu\nu} = -\left(g_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{q^{2}}\right)F_{1}\left(x,Q^{2}\right) + \frac{1}{p \cdot q}\left(p_{\mu} - q_{\mu}\frac{p \cdot q}{q^{2}}\right)\left(p_{\nu} - q_{\nu}\frac{p \cdot q}{q^{2}}\right)F_{2}\left(x,Q^{2}\right)$$

$$F_{1}(x,Q^{2}) = \frac{1}{2}\left(-g^{\mu\nu} + \frac{4x^{2}}{Q^{2}}p^{\mu}p^{\nu}\right)W_{\mu\nu}(x,Q^{2})$$

$$F_{2}(x,Q^{2}) = x\left(-g^{\mu\nu} + \frac{12x^{2}}{Q^{2}}p^{\mu}p^{\nu}\right)W_{\mu\nu}(x,Q^{2})$$

$$F_{2q}^{(0)}(x) = xg^{\mu\nu}W_{\mu\nu,q}^{(0)} = xg^{\mu\nu}\left[\frac{1}{4\pi}\int_{xp}^{q}\int_{xp}^{q}\int_{xp}^{q}\right]$$

$$= \left(xg^{\mu\nu}\right)\frac{e_{q}^{2}}{4\pi}\operatorname{Tr}\left[\frac{1}{2}\gamma \cdot p\gamma_{\mu}\gamma \cdot \left(p+q\right)\gamma_{\nu}\right]2\pi\delta\left((p+q)^{2}\right)$$

$$= e_{q}^{2}x\delta(1-x)$$

$$C_{q}^{(0)}(x) = e_{q}^{2}x\delta(1-x)$$

Backup slides for a complete example of NLO calculation in QCD!

Calculation of evolution kernels

Evolution kernels are process independent
 = Parton distribution functions are universal

L Extract from calculating parton PDFs' scale dependence

One loop contribution in dimensional regularization:

Recall:

$$C_{q}^{(1)}(x,Q^{2}/\mu^{2}) = F_{2q}^{(1)}(x,Q^{2}) - F_{2q}^{(0)}(x,Q^{2}) \otimes \varphi_{q/q}^{(1)}(x,\mu^{2}) \longrightarrow$$
 Scheme dependence!

Common UV-CT terms:

$$\Rightarrow \text{ MS scheme:} \quad \text{UV-CT}\Big|_{\text{MS}} = -\frac{\alpha_s}{2\pi} P_{qq}(x) \left(\frac{1}{\varepsilon}\right)_{\text{UV}}$$
$$\Rightarrow \overline{\text{MS scheme:}} \quad \text{UV-CT}\Big|_{\overline{\text{MS}}} = -\frac{\alpha_s}{2\pi} P_{qq}(x) \left(\frac{1}{\varepsilon}\right)_{\text{UV}} \left(1 + \varepsilon \ln(4\pi e^{-\gamma_{\varepsilon}})\right)$$

 \Rightarrow DIS scheme: choose a UV-CT, such that $C_q^{(1)}(x, Q^2 / \mu^2)|_{\text{DIS}} = 0$

□ One loop coefficient function:

$$C_q^{(1)}(x,Q^2/\mu^2) = F_{2q}^{(1)}(x,Q^2) - F_{2q}^{(0)}(x,Q^2) \otimes \varphi_{q/q}^{(1)}(x,\mu^2)$$

$$C_{q}^{(1)}(x,Q^{2}/\mu^{2}) = e_{q}^{2}x\frac{\alpha_{s}}{2\pi}\left\{P_{qq}(x)\ln\left(\frac{Q^{2}}{\mu_{\overline{MS}}^{2}}\right) + C_{F}\left[(1+x^{2})\left(\frac{\ln(1-x)}{1-x}\right)_{+} - \frac{3}{2}\left(\frac{1}{1-x}\right)_{+} - \frac{1+x^{2}}{1-x}\ln(x) + 3 + 2x - \left(\frac{9}{2} + \frac{\pi^{2}}{3}\right)\delta(1-x)\right]\right\}$$

IR safe as required by the QCD factorization!

Homework (2)

1) Use the criterion on slide 7 to prove that the one-jettiness distribution,

$$\frac{d\sigma_{e^+e^- \to \text{hadrons}}}{d\tau}$$
with the one-jettiness defined as: $\tau = \sum_k \min_{\hat{q}} \left\{ \frac{2\hat{q} \cdot p_k}{Q} \right\}$

is an infrared safe observable.

Backup slides

N-Jettiness – implementation

□ Steps for implementation:

- $\diamond\,$ Use a standard jet algorithms to find N-jets
- Initial reference vectors = momenta of the N-jets + hadron beam directions (reference vectors are the only information used from the jet algorithm)

 θ_{kj}

- ♦ Calculate value for the N-jettiness global event shape: τ_N (new reference directions from the minimization)
- Select events with N narrow well-separated jets and impose veto on additional jets

□ New "jet" momenta = sum of momenta in jet regions

$$P_i^{\mu} = \sum_k p_k^{\mu} \prod_{j \neq i} \theta \left(\hat{q}_j \cdot p_k - \hat{q}_i \cdot p_k \right)$$

□ N-jettiness momentum = sum of jettiness from each region:

$$\mathcal{T}_N = \sum_i \mathcal{T}_N^i \equiv \sum_i 2\hat{q}_i \cdot P_i$$

Dependence on Jet algorithms is power suppressed

PDFs of a parton

□ Change the state without changing the operator:

$$\begin{split} \phi_{q/h}(x,\mu^2) &= \int \frac{dy^-}{2\pi} e^{ixp^+y^-} \langle h(p) | \overline{\psi}_q(0) \frac{\gamma^+}{2} U^n_{[0,y^-]} \psi_2(y^-) | h(p) \rangle \\ | h(p) \rangle \Rightarrow | \text{parton}(p) \rangle \qquad \phi_{f/q}(x,\mu^2) - \text{given by Feynman diagrams} \end{split}$$

Lowest order quark distribution:

 \diamond From the operator definition:

$$\phi_{q'/q}^{(0)}(x) = \delta_{qq'} \int \frac{d^4k}{(2\pi)^4} \operatorname{Tr}\left[\left(\frac{1}{2}\gamma \cdot p\right)\left(\frac{\gamma^+}{2p^+}\right)\right] \delta\left(x - \frac{k^+}{p^+}\right) (2\pi)^4 \delta^4(p-k)$$
$$= \delta_{qq'} \delta(1-x)$$

D Leading order in α_s quark distribution:

 \Rightarrow Expand to $(g_s)^2$ – logarithmic divergent:

$$\phi_{q/q}^{(1)}(x) = C_F \frac{\alpha_s}{2\pi} \int \frac{dk_T^2}{k_T^2} \left[\frac{1+x^2}{(1-x)_+} + \frac{3}{2} \,\delta(1-x) \right] + \text{UVCT}$$
UV and CO divergence

NLO coefficient function – complete example

$$C_q^{(1)}(x,Q^2/\mu^2) = F_{2q}^{(1)}(x,Q^2) - F_{2q}^{(0)}(x,Q^2) \otimes \varphi_{q/q}^{(1)}(x,\mu^2)$$

□ **Projection operators in n-dimension:**

$$g_{\mu\nu}g^{\mu\nu} = n \equiv 4 - 2\varepsilon$$

$$\left| \left(1 - \varepsilon\right) F_2 = x \left(-g^{\mu\nu} + (3 - 2\varepsilon) \frac{4x^2}{Q^2} p^{\mu} p^{\nu} \right) W_{\mu\nu} \right|$$

Given Segment And Segmentation Feynman diagrams:

Calculation: $-g^{\mu\nu}W^{(1)}_{\mu\nu,q}$ and $p^{\mu}p^{\nu}W^{(1)}_{\mu\nu,q}$

Contribution from the trace of $W_{\mu\nu}$

Lowest order in n-dimension:

$$-g^{\mu\nu}W^{(0)}_{\mu\nu,q} = e_q^2(1-\varepsilon)\delta(1-x)$$

□ NLO virtual contribution:

$$-g^{\mu\nu}W^{(1)V}_{\mu\nu,q} = e_q^2(1-\varepsilon)\delta(1-x)$$

$$*\left(-\frac{\alpha_s}{\pi}\right)C_F\left[\frac{4\pi\mu^2}{Q^2}\right]^{\varepsilon}\frac{\Gamma(1+\varepsilon)\Gamma^2(1-\varepsilon)}{\Gamma(1-2\varepsilon)}\left[\frac{1}{\varepsilon^2} + \frac{3}{2}\frac{1}{\varepsilon} + 4\right]$$

□ NLO real contribution:

$$-g^{\mu\nu}W^{(1)R}_{\mu\nu,q} = e_q^2(1-\varepsilon)C_F\left(-\frac{\alpha_s}{2\pi}\right)\left[\frac{4\pi\mu^2}{Q^2}\right]^{\varepsilon}\frac{\Gamma(1+\varepsilon)}{\Gamma(1-2\varepsilon)} \\ *\left\{-\frac{1-\varepsilon}{\varepsilon}\left[1-x+\left(\frac{2x}{1-x}\right)\left(\frac{1}{1-2\varepsilon}\right)\right] + \frac{1-\varepsilon}{2(1-2\varepsilon)(1-x)} + \frac{2\varepsilon}{1-2\varepsilon}\right\}$$

□ The "+" distribution:

$$\left(\frac{1}{1-x}\right)^{1+\varepsilon} = -\frac{1}{\varepsilon}\delta(1-x) + \frac{1}{(1-x)_{+}} + \varepsilon\left(\frac{\ln(1-x)}{1-x}\right)_{+} + O(\varepsilon^{2})$$
$$\int_{z}^{1} dx \frac{f(x)}{(1-x)_{+}} = \int_{z}^{1} dx \frac{f(x) - f(1)}{1-x} + \ln(1-z)f(1)$$

 \Box One loop contribution to the trace of $W_{\mu\nu}$:

$$-g^{\mu\nu}W^{(1)}_{\mu\nu,q} = e_q^2(1-\varepsilon)\left(\frac{\alpha_s}{2\pi}\right)\left\{-\frac{1}{\varepsilon}P_{qq}(x) + P_{qq}(x)\ln\left(\frac{Q^2}{\mu^2(4\pi e^{-\gamma_E})}\right) + C_F\left[\left(1+x^2\right)\left(\frac{\ln(1-x)}{1-x}\right)_+ -\frac{3}{2}\left(\frac{1}{1-x}\right)_+ -\frac{1+x^2}{1-x}\ln(x) + 3-x-\left(\frac{9}{2}+\frac{\pi^2}{3}\right)\delta(1-x)\right]\right\}$$

Splitting function:

$$P_{qq}(x) = C_F \left[\frac{1+x^2}{(1-x)_+} + \frac{3}{2}\delta(1-x) \right]$$

One loop contribution to p^{\mu}p^{\nu} W_{\mu \nu}:

$$p^{\mu}p^{\nu}W^{(1)\nu}_{\mu\nu,q} = 0 \qquad p^{\mu}p^{\nu}W^{(1)R}_{\mu\nu,q} = e_q^2 C_F \frac{\alpha_s}{2\pi} \frac{Q^2}{4x}$$

 \Box One loop contribution to F_2 of a quark:

$$F_{2q}^{(1)}(x,Q^2) = e_q^2 x \frac{\alpha_s}{2\pi} \left\{ \left(-\frac{1}{\varepsilon} \right)_{CO} P_{qq}(x) \left(1 + \varepsilon \ln(4\pi e^{-\gamma_E}) \right) + P_{qq}(x) \ln\left(\frac{Q^2}{\mu^2}\right) + C_F \left[(1+x^2) \left(\frac{\ln(1-x)}{1-x}\right)_+ -\frac{3}{2} \left(\frac{1}{1-x}\right)_+ -\frac{1+x^2}{1-x} \ln(x) + 3 + 2x - \left(\frac{9}{2} + \frac{\pi^2}{3}\right) \delta(1-x) \right] \right\}$$

$$\Rightarrow \quad \infty \quad \text{as} \quad \varepsilon \to 0$$

□ One loop contribution to quark PDF of a quark:

$$\varphi_{q/q}^{(1)}(x,\mu^2) = \left(\frac{\alpha_s}{2\pi}\right) P_{qq}(x) \left\{ \left(\frac{1}{\varepsilon}\right)_{\rm UV} + \left(-\frac{1}{\varepsilon}\right)_{\rm CO} \right\} + \rm UV-\rm CT$$

- in the dimensional regularization

$$\Rightarrow \infty \quad \text{as} \quad \mathcal{E} \to 0$$

$$C_q^{(1)}(x, Q^2 / \mu^2) = F_{2q}^{(1)}(x, Q^2) - F_{2q}^{(0)}(x, Q^2) \otimes \varphi_{q/q}^{(1)}(x, \mu^2)$$

Common UV-CT terms:

$$\Rightarrow \text{ MS scheme:} \quad \text{UV-CT}\Big|_{\text{MS}} = -\frac{\alpha_s}{2\pi} P_{qq}(x) \left(\frac{1}{\varepsilon}\right)_{\text{UV}}$$
$$\Rightarrow \overline{\text{MS scheme:}} \quad \text{UV-CT}\Big|_{\overline{\text{MS}}} = -\frac{\alpha_s}{2\pi} P_{qq}(x) \left(\frac{1}{\varepsilon}\right)_{\text{UV}} \left(1 + \varepsilon \ln(4\pi e^{-\gamma_{\varepsilon}})\right)$$

 \Rightarrow DIS scheme: choose a UV-CT, such that $C_q^{(1)}(x, Q^2 / \mu^2)|_{\text{DIS}} = 0$

□ One loop coefficient function:

$$C_q^{(1)}(x,Q^2/\mu^2) = F_{2q}^{(1)}(x,Q^2) - F_{2q}^{(0)}(x,Q^2) \otimes \varphi_{q/q}^{(1)}(x,\mu^2)$$

$$C_{q}^{(1)}(x,Q^{2}/\mu^{2}) = e_{q}^{2}x\frac{\alpha_{s}}{2\pi}\left\{P_{qq}(x)\ln\left(\frac{Q^{2}}{\mu_{\overline{MS}}^{2}}\right) + C_{F}\left[(1+x^{2})\left(\frac{\ln(1-x)}{1-x}\right)_{+} - \frac{3}{2}\left(\frac{1}{1-x}\right)_{+} - \frac{1+x^{2}}{1-x}\ln(x) + 3 + 2x - \left(\frac{9}{2} + \frac{\pi^{2}}{3}\right)\delta(1-x)\right]\right\}$$

IR safe as required by the QCD factorization!

□ Leading singular integration regions (pinch surface):

□ Collinear gluons:

- \diamond Collinear gluons have the polarization vector: $\ \epsilon^{\mu} \sim k^{\mu}$
- The sum of the effect can be represented by the eikonal lines,

which are needed to make the PDFs gauge invariant!

Hard: all lines off-shell by Q

Collinear:

- ♦ lines collinear to A and B
- One "physical parton" per hadron

Soft: all components are soft

□ Trouble with soft gluons:

 $(xp+k)^2 + i\epsilon \propto k^- + i\epsilon$ $((1-x)p-k)^2 + i\epsilon \propto k^- - i\epsilon$

- Soft gluon exchanged between a spectator quark of hadron B and the active quark of hadron A could rotate the quark's color and keep it from annihilating with the antiquark of hadron B
- ♦ The soft gluon approximations (with the eikonal lines) need k^{\pm} not too small. But, k^{\pm} could be trapped in "too small" region due to the pinch from spectator interaction: $k^{\pm} \sim M^2/Q \ll k_{\perp} \sim M$ Need to show that soft-gluon interactions are power suppressed

□ Most difficult part of factorization:

- ♦ Sum over all final states to remove all poles in one-half plane
 - no more pinch poles
- \diamond Deform the k^{\pm} integration out of the trapped soft region
- ♦ Eikonal approximation → soft gluons to eikonal lines
 - gauge links
- Collinear factorization: Unitarity soft factor = 1
 All identified leading integration regions are factorizable!