Weihai High Energy Physics School

Introduction to Quantum Chromodynamics (QCD)

Jianwei Qiu August 16 – 19, 2018 Four Lectures

The 3rd WHEPS, August 16-24, 2018, Weihai, Shandong

From one hadron to two hadrons

Factorization for more than two hadrons

How to calculate the perturbative parts?

\Box Use DIS structure function F_2 as an example:

$$F_{2h}(x_B, Q^2) = \sum_{q, f} C_{q/f}\left(\frac{x_B}{x}, \frac{Q^2}{\mu^2}, \alpha_s\right) \otimes \varphi_{f/h}\left(x, \mu^2\right) + O\left(\frac{\Lambda_{\text{QCD}}^2}{Q^2}\right)$$

 \diamond Apply the factorized formula to parton states: $h \rightarrow q$

Feynman
diagrams
$$F_{2q}(x_B, Q^2) = \sum_{q,f} C_{q/f}\left(\frac{x_B}{x}, \frac{Q^2}{\mu^2}, \alpha_s\right) \otimes \varphi_{f/q}\left(x, \mu^2\right)$$
 \leftarrow Feynman
diagrams

 \diamond Express both SFs and PDFs in terms of powers of α_s :

Partonic cross sections – LO

□ Projection operators for SFs:

$$W_{\mu\nu} = -\left(g_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{q^{2}}\right)F_{1}\left(x,Q^{2}\right) + \frac{1}{p \cdot q}\left(p_{\mu} - q_{\mu}\frac{p \cdot q}{q^{2}}\right)\left(p_{\nu} - q_{\nu}\frac{p \cdot q}{q^{2}}\right)F_{2}\left(x,Q^{2}\right)$$

$$F_{1}(x,Q^{2}) = \frac{1}{2}\left(-g^{\mu\nu} + \frac{4x^{2}}{Q^{2}}p^{\mu}p^{\nu}\right)W_{\mu\nu}(x,Q^{2})$$

$$F_{2}(x,Q^{2}) = x\left(-g^{\mu\nu} + \frac{12x^{2}}{Q^{2}}p^{\mu}p^{\nu}\right)W_{\mu\nu}(x,Q^{2})$$

$$F_{2q}^{(0)}(x) = xg^{\mu\nu}W_{\mu\nu,q}^{(0)} = xg^{\mu\nu}\left[\frac{1}{4\pi}\int_{xp}^{q}\int_{xp}^{q}\int_{xp}^{q}\right]$$

$$= \left(xg^{\mu\nu}\right)\frac{e_{q}^{2}}{4\pi}\operatorname{Tr}\left[\frac{1}{2}\gamma \cdot p\gamma_{\mu}\gamma \cdot \left(p+q\right)\gamma_{\nu}\right]2\pi\delta\left((p+q)^{2}\right)$$

$$= e_{q}^{2}x\delta(1-x)$$

$$C_{q}^{(0)}(x) = e_{q}^{2}x\delta(1-x)$$

Backup slides for a complete example of NLO calculation in QCD!

Calculation of evolution kernels

Evolution kernels are process independent
 = Parton distribution functions are universal

L Extract from calculating parton PDFs' scale dependence

One loop contribution in dimensional regularization:

Recall:

$$C_{q}^{(1)}(x,Q^{2}/\mu^{2}) = F_{2q}^{(1)}(x,Q^{2}) - F_{2q}^{(0)}(x,Q^{2}) \otimes \varphi_{q/q}^{(1)}(x,\mu^{2}) \longrightarrow$$
 Scheme dependence!

Common UV-CT terms:

$$\Rightarrow \text{ MS scheme:} \quad \text{UV-CT}\Big|_{\text{MS}} = -\frac{\alpha_s}{2\pi} P_{qq}(x) \left(\frac{1}{\varepsilon}\right)_{\text{UV}}$$
$$\Rightarrow \overline{\text{MS scheme:}} \quad \text{UV-CT}\Big|_{\overline{\text{MS}}} = -\frac{\alpha_s}{2\pi} P_{qq}(x) \left(\frac{1}{\varepsilon}\right)_{\text{UV}} \left(1 + \varepsilon \ln(4\pi e^{-\gamma_{\varepsilon}})\right)$$

 \Rightarrow DIS scheme: choose a UV-CT, such that $C_q^{(1)}(x, Q^2 / \mu^2)|_{\text{DIS}} = 0$

□ One loop coefficient function:

$$C_q^{(1)}(x,Q^2/\mu^2) = F_{2q}^{(1)}(x,Q^2) - F_{2q}^{(0)}(x,Q^2) \otimes \varphi_{q/q}^{(1)}(x,\mu^2)$$

$$C_{q}^{(1)}(x,Q^{2}/\mu^{2}) = e_{q}^{2}x\frac{\alpha_{s}}{2\pi}\left\{P_{qq}(x)\ln\left(\frac{Q^{2}}{\mu_{\overline{MS}}^{2}}\right) + C_{F}\left[(1+x^{2})\left(\frac{\ln(1-x)}{1-x}\right)_{+} - \frac{3}{2}\left(\frac{1}{1-x}\right)_{+} - \frac{1+x^{2}}{1-x}\ln(x) + 3 + 2x - \left(\frac{9}{2} + \frac{\pi^{2}}{3}\right)\delta(1-x)\right]\right\}$$

IR safe as required by the QCD factorization!

Global QCD analyses – Testing QCD

□ Factorization for observables with identified hadrons:

♦ Factorized cross sections (DIS):

$$F_2(x_B, Q^2) = \Sigma_f C_f(x_B/x, \mu^2/Q^2) \otimes f(x, \mu^2)$$

♦ DGLAP Evolution:

$$\frac{\partial f(x,\mu^2)}{\partial \ln \mu^2} = \sum_{f'} P_{ff'}(x/x') \otimes f'(x',\mu^2)$$

Adding more observables:
 Factorized cross section with multiple-hadrons (next lecture)

Testing QCD: Universal PDFs for all cross sections?

□ Input for QCD Global analysis/fitting:

♦ World data with "Q" > 2 GeV

♦ PDFs at an input scale: $\phi_{f/h}(x, \mu_0^2, \{\alpha_j\})$

Input scale ~ GeV

Fitting paramters

Global QCD analysis – Testing QCD

Procedure: Iterate to find the best set of $\{a_i\}$ for the input DPFs

PDFs from DIS alone

□ Q²-dependence is a prediction of pQCD calculation:

Physics interpretation of PDFs:

$$\begin{split} f(x,Q^2): & \mbox{Probability density to find a parton of flavor "f"} \\ & \mbox{carrying momentum fraction "x", probed at a scale of "Q2"} \\ & \mbox{Number of partons:} & \int_0^1 dx \, u_v(x,Q^2) = 2, \quad \int_0^1 dx \, d_v(x,Q^2) = 1 \\ & \mbox{ Momentum fraction:} & \langle x(Q^2) \rangle_f = \int_0^1 dx \, x \, f(x,Q^2) & \longrightarrow & \sum_f \langle x(Q^2) \rangle = 1 \end{split}$$

PDFs from Global Fitting

K.A. Olive et al. (Particle Data Group), Chin. Phys. C, 38, 090001 (2014). Consistently fit almost all data with Q > 2GeV

Scaling and scaling violation

Q²-dependence is a prediction of pQCD calculation

Hadronic Jet Production

Predictions with extracted PDFs:

The great success of the SM physics

Otanida			Status: March 2017	∫∠ ut [fb ⁻¹]	Reference
nn	and corrected corrected corrected corrected corrected corrected			50×10 ⁻⁸	PLB 761 (2016) 158
44		0	•	8×10 ⁻⁸	Nucl. Phys. B, 486-548 (201
Jets R=0.4		0.1 < p _T < 2 TeV O	Ó	4.5	JHEP 02, 153 (2015)
Dijets R=0.4	0.3 < m _{jj}	Ø	4.5	JHEP 05, 059 (2014)	
	$p_{\rm T} > 125 { m ~GeV}$		P	3.2	arXiv: 1701.06882 [hep-ex]
γ	$p_{\rm T} > 2$	5 GeV 🛆		20.2	JHEP 06 (2016) 005
	$p_{\rm T} > 100 \text{ GeV}$		0	4.6	PRD 89, 052004 (2014)
W			1 5 1	0.081	PLB 759 (2016) 601
	0		2	4.6	arXiv:1612.03016 [hep-ex]
Z	Ļ			3.2	JHEP 02 (2017) 117
				20.2	JHEP 02 (2017) 117
				4.0	PLB 761 (2016) 136
tī	Ļ ,		1 7 1	3.Z 20.2	FP.IC 74: 3109 (2014)
	4		1 16	16	EPJC 74: 3109 (2014)
				3.2	arXiv:1609.03920 [hep-ex]
t _{t-chan}				20.3	arXiv:1702.02859 [hep-ex]
	ō	Theory	<u>Б</u>	4.6	PRD 90, 112006 (2014)
			6	3.2	arXiv: 1702.04519 [hep-ex]
ww	Δ -			20.3	PLB 763, 114 (2016)
	Ö	LHC pp $\gamma s = 7$ lev	b	4.6	PRD 87, 112001 (2013)
γγ	Ō	Data	0	4.9	JHEP 01, 086 (2013)
		• stat		3.2	arXiv:1612.07231 [hep-ex]
Wt	Δ.	stat e syst	L	20.3	JHEP 01, 064 (2016)
	O	5141 @ 5951		2.0	PLB 716, 142-159 (2012)
wz	D	LHC pp $\sqrt{s} = 8$ TeV	φ	3.2	PLB 762 (2016) 1
	Δ		4	20.3	PRD 93, 092004 (2016)
	0	Data	o	4.6	EPJC 72, 2173 (2012)
ZZ		stat	. P	3.2	PRL 116, 101801 (2016)
	Δ	stat ⊕ syst	Δ	20.3	JHEP 01, 099 (2017)
	0		O	4.6	JHEP 03, 128 (2013)
L _{s-chan}	4	LHC pp $\gamma s = 13$ TeV		20.3	PLB 756, 228-246 (2016) PBD 87, 112003 (2013)
ννγ	, O	Data	P P	4.6	arXiv:1407,1618 [hep-ph] PRD 93, 112002 (2016)
Zγ		Stat		20.3	arXiv:1407,1618 [hep-ph] PRD 87, 112003 (2013)
		stat exet	V	4.0	arXiv:1407.1618 [hep-ph]
tŦW		Sidi © Sysi		20.2	JHEP 11 172 (2015)
_	6			3.2	EPJC 77 (2017) 40
ttZ	N			20.3	JHEP 11, 172 (2015)
tīγ		1		4.6	PRD 91, 072007 (2015)
		liminary		20.2	arXiv:1703.04362 [hep-ex]
VVJJEWK	$m_{ij} > 500 \text{GeV}$ \bullet AILAS FIE			4.7	arXiv:1703.04362 [hep-ex]
Zjjewk				20.3	JHEP 04, 031 (2014)
Ζγγ	∆ Bun 1.2 √s			20.3	PRD 93, 112002 (2016)
$W_{\gamma\gamma}$				20.3	PRL 115, 031802 (2015)
/±W±jj еwк				20.3	arXiv: 1611.02428 [hep-ex]
WZjjewk				20.3	PRD 93, 092004 (2016)
	<u>unt e connecte conne</u>				
1	0^{-4} 10 ⁻³ 10 ⁻² 10 ⁻¹ 1 10 ¹ 10 ² 10 ³ 10	14 105 106 1011	05115225		
1		, 10 10 10	0.5 1 1.5 2 2.5		

SM: Electroweak processes + QCD perturbation theory works!

Uncertainties of PDFs

Partonic luminosities

q - qbar

g - **g**

PDFs at large x

\Box Testing ground for hadron structure at $x \rightarrow 1$:

PDFs at large x

\Box Testing ground for hadron structure at $x \rightarrow 1$:

 $\diamond d/u \rightarrow 1/2$

SU(6) Spin-flavor symmetry

 $\diamond d/u \rightarrow 0$

Scalar diquark dominance

 $\diamond \Delta u/u \rightarrow 2/3$ $\Delta d/d \rightarrow -1/3$

 $\diamond \Delta u/u \rightarrow 1$ $\Delta d/d \rightarrow -1/3$

 $\diamond d/u \rightarrow 1/5$

pQCD power counting

 $\diamond \Delta u/u \rightarrow 1$ $\Delta d/d \rightarrow 1$

 $\Rightarrow \ d/u \rightarrow \frac{4\mu_n^2/\mu_p^2 - 1}{4 - \mu_n^2/\mu_n^2} \ \ {\rm Local \ quark-hadron} \ \ {\rm dual \ transformation}$

duality

 $\diamond \Delta u/u \rightarrow 1$ $\Delta d/d \rightarrow 1$

 ≈ 0.42

What data try to say?

Future large-x experiments

Plus many more JLab experiments:

E12-06-110 (Hall C on ³He), E12-06-122 (Hall A on ³He), E12-06-109 (CLAS on NH₃, ND₃), ... and Fermilab E906, ... *Can lattice Q*

Can lattice QCD help?

Calculate partonic structure in lattice QCD?

□ Answer: Not directly!

Large momentum transfer & collinear approximation

- **Operators on light-cone**
- Can't be calculated in lattice QCD
- Physical observables in the path integral:

$$\langle \mathcal{O} \rangle \equiv \frac{1}{Z} \int \mathcal{D}A \, \mathcal{D}\overline{\psi} \, \mathcal{D}\psi \, \mathcal{O}(\overline{\psi}, \psi, A) \, e^{iS(\overline{\psi}, \psi, A)} \quad \text{ with } \quad Z = \int \mathcal{D}A \, \mathcal{D}\overline{\psi} \, \mathcal{D}\psi \, e^{iS(\overline{\psi}, \psi, A)}$$

D Lattice QCD in Euclidian Space: $t \rightarrow i t_E$

$$\langle \mathcal{O} \rangle \equiv \frac{1}{Z} \int \mathcal{D}A \, \mathcal{D}\overline{\psi} \, \mathcal{D}\psi \, \mathcal{O}_E(\overline{\psi}, \psi, A) \, e^{-S_E(\overline{\psi}, \psi, A)}$$

IF $\mathcal{O}(\overline{\psi}, \psi, A)$ depends on time, $\mathcal{O}(\overline{\psi}, \psi, A) \neq \mathcal{O}_E(\overline{\psi}, \psi, A)$!

Lattice QCD calculable observables:

- Time-independent operators
- $\diamond\,\, {\rm Has}\, {\rm a}\, {\rm reliable}\, {\rm continuous}\, {\rm limit}$

 $\mathcal{F}.\mathcal{T}. \langle p | \overline{\psi}(0) \gamma^+ \psi(y^-) | p \rangle$

0

Ζ

Hadron's partonic structure from Lattice QCD

Quasi-PDFs:

Ji, arXiv:1305.1539

Pseudo-PDFs:

$$\begin{split} \mathcal{M}^{\alpha}(\nu = p \cdot \xi, \xi^2) &\equiv \langle p | \overline{\psi}(0) \gamma^{\alpha} \Phi_{\nu}(0, \xi, \nu \cdot A) \psi(\xi) | p \rangle & \text{Radyushkin, 2017} \\ &\equiv 2p^{\alpha} \mathcal{M}_p(\nu, \xi^2) + \xi^{\alpha}(p^2/\nu) \mathcal{M}_{\xi}(\nu, \xi^2) \approx 2p^{\alpha} \mathcal{M}_p(\nu, \xi^2) \\ \mathcal{P}(x, \xi^2) &\equiv \int \frac{d\nu}{2\pi} e^{ix \, \nu} \frac{1}{2p^+} \mathcal{M}^+(\nu, \xi^2) & \text{with } \xi^2 < 0 \\ & \text{Off-light-cone extension of PDFs:} \quad f(x) = \mathcal{P}(x, \xi^2 = 0) & \text{with } \xi^{\mu} = (0^+, \xi^-, 0_\perp \mathbf{O}) \\ & \text{Other approaches, ...} \end{split}$$

"OPE without OPE" (Chambers et al. 2017), Hadronic tensor (Liu et al. 1994, ...), ...

Hadron's partonic structure from Lattice QCD

Good "Lattic cross sections":

Ma and Qiu, arXiv:1404.6860 arXiv:1709.03018

= Single hadron matrix element:

 $\sigma_n(\omega,\xi^2,P^2) = \langle P|T\{\mathcal{O}_n(\xi)\}|P\rangle$ with $\omega \equiv P \cdot \xi, \ \xi^2 \neq 0$, and $\xi_0 = 0$; and

- 1) can be calculated in lattice QCD with precision, has a well-defined continuum limit (UV+IR safe perturbatively), and
- 2) can be factorized into universal matrix elements of quarks and gluons with controllable approximation Collaboration between lattice QCD

Current-current correlators:

Collaboration between lattice QCD and perturbative QCD!

$$\mathcal{O}_{j_1 j_2}(\xi) \equiv \xi^{d_{j_1} + d_{j_2} - 2} Z_{j_1}^{-1} Z_{j_2}^{-1} j_1(\xi) j_2(0)$$

with

- d_j : Dimension of the current
- Z_i : Renormalization constant of the current

Sample currents:

$$j_{S}(\xi) = \xi^{2} Z_{S}^{-1} [\overline{\psi}_{q} \psi_{q}](\xi),$$

$$j_{V'}(\xi) = \xi Z_{V'}^{-1} [\overline{\psi}_{q} \gamma \cdot \xi \psi_{q'}](\xi),$$

$$\mathcal{O}_q(\xi) = Z_q^{-1}(\xi^2)\overline{\psi}_q(\xi)\,\gamma\cdot\xi\Phi(\xi,0)\,\psi_q(0)$$

$$j_{V}(\xi) = \xi Z_{V}^{-1} [\overline{\psi}_{q} \gamma \cdot \xi \psi_{q}](\xi),$$

$$j_{G}(\xi) = \xi^{3} Z_{G}^{-1} [-\frac{1}{4} F_{\mu\nu}^{c} F_{\mu\nu}^{c}](\xi), \dots$$

 $\Phi(\xi,0) = \mathcal{P}e^{-ig\int_0^1 \xi \cdot A(\lambda\xi) \, d\lambda}$

Hadron's partonic structure from Lattice QCD

Complementarity and advantages:

- Complementary to existing approaches for extracting PDFs,
- Quasi-PDFs and pseudo-PDFs are special cases,
- ♦ Have tremendous potentials:

Neutron PDFs, ... (no free neutron target!) Meson PDFs, such as pion, ... More direct access to gluons – gluonic current, quark flavor, ...

Numerical results from Lattice QCD

Two collaborations have performed the calculation:

- ♦ Results are encouraging (|x| > 1 region)
- Differences between two needs to be resolved
- $\diamond\,$ More detailed studies are still needed
- BNL/Stony Brook is also trying to verify the results
- ♦ JLab/WM is improving its Pseudo-PDFs calculation
- $\diamond\,$ JLab is calculating "two-current correlator" of Pion and Keon

Next QCD Frontier: Femto-Science

Need a facility to be able to explore/see the structure and dynamics !

Hard probes from high energy collisions

□ Lepton-lepton collisions:

Hadron-hadron collisions:

Lepton-hadron collisions:

 e^+ $\gamma */Z^0$ f Ha

Hadrons

♦ No hadron in the initial-state

- ♦ Hadrons are emerged from energy
- ♦ Not ideal for studying hadron structure

♦ Hadron structure – motion of quarks, ...
 ♦ Emergence of hadrons, ...

♦ Initial hadrons broken – collision effect, ..

Hard collision without breaking the initial-state hadron – spatial imaging, ...

Why a lepton-hadron facility is special?

Many complementary probes at one facility:

 $Q^2 \rightarrow Measure of resolution$

 $\mathbf{y} \rightarrow \mathbf{M}$ easure of inelasticity

 $X \rightarrow$ Measure of momentum fraction

of the struck quark in a proton $Q^2 = S \times V$

Inclusive events: e+p/A → e'+X Detect only the scattered lepton in the detector (Modern Rutherford experiment!)

<u>Semi-Inclusive events</u>: $e+p/A \rightarrow e'+h(\pi,K,p,jet)+X$

Detect the scattered lepton in coincidence with identified hadrons/jets (Initial hadron is broken – confined motion! – cleaner than h-h collisions) <u>Exclusive events:</u> $e+p/A \rightarrow e'+p'/A'+h(\pi,K,p,jet)$

Detect every things including scattered proton/nucleus (or its fragments) (Initial hadron is NOT broken – tomography! – almost impossible for h-h collisions)

Jefferson Lab @ 12 GeV

□ Lepton-hadron facility:

12 GeV CEBAF Upgrade Project was completed with one run, ready for more

Page 8

9/22/17

Date

12 GeV CEBAF Upgrade CD-4B (CD-4) ESAAB Approval

Dr. J. Stephen Binkley

Office of Science

Deputy Director for Science Programs

With an extremely high luminosity ~ 10³⁸ [cm⁻² s⁻¹]

The Electron-Ion Collider (EIC) – the Future!

A sharpest "CT" – "imagine" quark/gluon structure without breaking the hadron

- "cat-scan" the nucleon and nuclei with a better than 1/10 fm resolution
- "see" proton "radius" of quark/gluon density comparing with the radius of EM charge density

To discover color confining radius, hints on confining mechanism!

□ A giant "Microscope" – "see" quarks and gluons by breaking the hadron

US EIC – Two Options of Realization

US EIC – Luminosity & kinematics coverage

US-EIC – can do what HERA could not do

Quantum imaging:

- ♦ HERA discovered: 15% of e-p events is diffractive Proton not broken!
- US-EIC: 100-1000 times luminosity Critical for 3D tomography!

Quantum interference & entanglement:

 US-EIC: Highly polarized beams – Origin of hadron property: Spin, ... Direct access to chromo-quantum interference!

 US-EIC: Light-to-heavy nuclear beams – Origin of nuclear force, ... Catch the transition from chromo-quantum fluctuation to chromo-condensate of gluons, ...
 Emergence of hadrons (femtometer size detector!), – "a new controllable knob" – Atomic weight of nuclei

Report from The US National Academy

An Assessment of U.S.-Based Electron-Ion Collider Science

Released on July 24, 2018

Committee on U.S.-Based Electron-Ion Collider Science Assessment

Board on Physics and Astronomy

Division on Engineering and Physical Sciences

A Consensus Study Report of

The National Academies of SCIENCES • ENGINEERING • MEDICINE

The study is supported by funding from the DOE Office of Science. (Further information can be found at: https://www.nap.edu/25171)

Report from The US National Academy

The National Academies of Sciences, Engineering, and Medicine was asked by the U.S. Department of Energy to assess the scientific justification for building an Electron-Ion Collider (EIC) facility. The unanimous conclusion of the Committee is that an EIC, as envisioned in this report, would be...

... a unique facility in the world that would answer science questions that are compelling, fundamental, and timely, and help maintain U.S. scientific leadership in nuclear physics.

Finding 1: An EIC can uniquely address three profound questions about nucleons —neutrons and protons—and how they are assembled to form the nuclei of atoms:

- How does the mass of the nucleon arise?
- How does the spin of the nucleon arise?
- What are the emergent properties of dense systems of gluons?

Emergent Hadron Properties from QCD

❑ Mass – intrinsic to a particle:

= Energy of the particle when it is at the rest

 $\diamond\,$ QCD energy-momentum tensor in terms of quarks and gluons

❑ Spin – intrinsic to a particle:

= Angular momentum of the particle when it is at the rest

 $\langle p|p\rangle$

QCD angular momentum density in terms of energy-momentum tensor

Rest frame

$$M^{\alpha\mu\nu} = T^{\alpha\nu}x^{\mu} - T^{\alpha\mu}x^{\nu} \qquad \qquad J^{i} = \frac{1}{2}\epsilon^{ijk}\int d^{3}x M^{0jk}$$

♦ Proton spin:

$$S(\mu) = \sum_{i} \langle P, S | \hat{J}_{f}^{z}(\mu) | P, S \rangle = \frac{1}{2}$$

If we do not understand proton mass & spin, we do not know QCD!

The Proton Mass

Nucleon mass – dominates the mass of visible world:

Higgs mechanism is not enough!!!

"Mass without mass!"

□ How does QCD generate the nucleon mass?

"... The vast majority of the nucleon's mass is due to quantum fluctuations of quark-antiquark pairs, the gluons, and the energy associated with quarks moving around at close to the speed of light. ..."

REACHING FOR THE HORIZON

The 2015 Long Range Plan for Nuclear Science

How to quantify and verify this, theoretically and experimentally?

The Proton Mass: from Models to QCD

The Proton Mass: Lattice QCD

□ Hadron mass from Lattice QCD calculation:

How does QCD generate this? The role of quarks vs. that of gluons?

Decomposition of QCD energy-momentum tensor:

$$\begin{split} T^{\mu\nu} &= \overline{T^{\mu\nu}} + \widehat{T^{\mu\nu}} \\ \text{Traceless term:} \quad \overline{T^{\mu\nu}} \equiv T^{\mu\nu} - \frac{1}{4} g^{\mu\nu} T^{\alpha}_{\ \alpha} \\ \text{Trace term:} \quad \widehat{T^{\mu\nu}} \equiv \frac{1}{4} g^{\mu\nu} T^{\alpha}_{\ \alpha} \\ \text{with} \quad T^{\alpha}_{\ \alpha} &= \frac{\beta(g)}{2g} F^{\mu\nu,a} F^{a}_{\mu\nu} + \sum_{q=u,d,s} m_q (1 + \gamma_m) \overline{\psi}_q \psi_q \\ \text{QCD trace anomaly} \quad \beta(g) &= -(11 - 2n_f/3) g^3/(4\pi)^2 + \dots \end{split}$$

♦ Invariant hadron mass (in any frame):

$$\langle p | T^{\mu\nu} | p \rangle \propto p^{\mu} p^{\nu} \qquad \longrightarrow \qquad \langle p | T^{\mu\nu} | p \rangle (g_{\mu\nu}) \propto p^{\mu} p^{\nu} (g_{\mu\nu}) = m^2$$
$$\qquad \longrightarrow \qquad m^2 \propto \langle p | T^{\alpha}_{\ \alpha} | p \rangle$$

 Hadron mass: Gluon quantum effect + Chiral symmetry breaking!

 Proton mass sum rule(s): Useful only if the individual term can be measured independently It is not a focus of my lectures, backup slides for other decompositions

The Proton Mass

☐ Three-pronged approach to explore the origin of hadron mass

- ♦ Lattice QCD
- ♦ Mass decomposition roles of the constituents
- ♦ Model calculation approximated analytical approach

https://phys.cst.temple.edu/meziani /proton-mass-workshop-2016/

http://www.ectstar.eu/node/2218

A true international effort!

Castello di Trento ("Trint"), watercolor 19.8 x 27.7, painted by A. Dürer on his way back from Venice (1495). British Museum, Londor

The Proton Mass: At the Heart of Most Visible Matter Trento, April 3 - 7, 2017

Homework (3)

1) Derive the one-loop contribution to quark distribution within a quark,

$$\varphi_{q/q}^{(1)}(x,\mu^2) = \left(\frac{\alpha_s}{2\pi}\right) P_{qq}(x) \left\{ \left(\frac{1}{\varepsilon}\right)_{\rm UV} + \left(-\frac{1}{\varepsilon}\right)_{\rm CO} \right\} + \rm UV-\rm CT$$

on the slide 6. Additional information from the backup slide 43 might be helpful.

Backup slides

PDFs of a parton

□ Change the state without changing the operator:

$$\begin{split} \phi_{q/h}(x,\mu^2) &= \int \frac{dy^-}{2\pi} e^{ixp^+y^-} \langle h(p) | \overline{\psi}_q(0) \frac{\gamma^+}{2} U^n_{[0,y^-]} \psi_2(y^-) | h(p) \rangle \\ | h(p) \rangle \Rightarrow | \text{parton}(p) \rangle \qquad \phi_{f/q}(x,\mu^2) - \text{given by Feynman diagrams} \end{split}$$

Lowest order quark distribution:

 \diamond From the operator definition:

$$\phi_{q'/q}^{(0)}(x) = \delta_{qq'} \int \frac{d^4k}{(2\pi)^4} \operatorname{Tr}\left[\left(\frac{1}{2}\gamma \cdot p\right)\left(\frac{\gamma^+}{2p^+}\right)\right] \delta\left(x - \frac{k^+}{p^+}\right) (2\pi)^4 \delta^4(p-k)$$
$$= \delta_{qq'} \delta(1-x)$$

D Leading order in α_s quark distribution:

 \Rightarrow Expand to $(g_s)^2$ – logarithmic divergent:

$$\phi_{q/q}^{(1)}(x) = C_F \frac{\alpha_s}{2\pi} \int \frac{dk_T^2}{k_T^2} \left[\frac{1+x^2}{(1-x)_+} + \frac{3}{2} \,\delta(1-x) \right] + \text{UVCT}$$
UV and CO divergence

□ Another proton mass sum rule:

$$M_p = \left. \frac{\langle P | \int d^3 x \, T^{00} | P \rangle}{\langle P | P \rangle} \right|_{\text{at rest}}$$

♦ Hamiltonian:

$$H_{\rm QCD} = \int d^3 \vec{x} \ T^{00}(0, \vec{x})$$

QCD energy-momentum tensor:

$$\begin{aligned} & \left. \langle P | \overline{T}^{\mu\nu} | P \rangle = \left(P^{\mu} P^{\nu} - \frac{1}{4} M_p^2 g^{\mu\nu} \right) \\ & \left. \frac{\langle P | \int d^3x \, \overline{T}^{00} | P \rangle}{\langle P | P \rangle} \right|_{\text{at rest}} = \frac{3}{4} M_p \end{aligned}$$

$$\langle P'|P\rangle = 2P^0(2\pi)^3\delta^3(\vec{P}' - \vec{P})$$

 $T^{\mu\nu} = \overline{T^{\mu\nu}} + \widehat{T^{\mu\nu}}$ **"Trace" term** $\langle P|\widehat{T}^{\mu\nu}|P\rangle = \frac{1}{4}M_p g^{\mu\nu}$ $\frac{\langle P|\int d^3x \,\widehat{T}^{00}|P\rangle}{\langle P|P\rangle} \bigg|_{\text{at rest}} = \frac{1}{4}M_p$

♦ Role of quarks and gluons:

X. Ji, PRL (1995)

□ Roles of quarks and gluons:

♦ Quark energy contribution:

$$H_q = \int d^3 \vec{x} \ \bar{\psi}(-i\mathbf{D} \cdot \alpha)\psi,$$

♦ Gluon energy contribution:

$$H_g = \int d^3 \vec{x} \; \frac{1}{2} (\mathbf{E}^2 + \mathbf{B}^2)$$

♦ Quark mass contribution:

$$H_m = \int d^3 ec x \; ar \psi m \psi$$

$$M_q = \left. \frac{\langle P | H_q | P \rangle}{\langle P | P \rangle} \right|_{\text{at rest}} = (a - b) \frac{3}{4} M_p$$

$$M_g = \left. \frac{\langle P | H_g | P \rangle}{\langle P | P \rangle} \right|_{\text{at rest}} = (1-a) \frac{3}{4} M_p$$

$$M_m = \left. \frac{\langle P | H_m | P \rangle}{\langle P | P \rangle} \right|_{\text{at rest}} = b M_p$$

 \diamond Trace anomaly contribution:

$$H_a = \int d^3 \vec{x} \, \frac{9\alpha_s}{16\pi} \left(\mathbf{E}^2 - \mathbf{B}^2 \right) \quad M_a = \left. \frac{\langle P|H_a|P \rangle}{\langle P|P \rangle} \right|_{\text{at rest}} = (1-b) \, \frac{1}{4} \, M_p$$

□ Two independent parameters:

♦ Quark momentum fraction:

$$a(\mu^{2}) = \frac{1}{P^{+}P^{+}} \langle P|i\overline{\psi}\gamma^{(+}D^{+)}\psi|P\rangle = \sum_{q} \int_{0}^{1} x \left[q(x,\mu^{2}) + \overline{q}(x,\mu^{2})\right] dx$$

♦ Chiral symmetry breaking:

$$b(\mu^2) = \frac{1}{2M_p^2} \langle P|m(1+\gamma_m)\overline{\psi}\psi|P\rangle$$

Related to meson-nucleon – σ terms

$$\sigma_{\pi N} = \widehat{m} \langle |\overline{u}u + \overline{d}d|N \rangle$$
$$\widehat{m} = (m_u + m_d)/2$$

