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Lecture Plan !1

Lecture 1: Hadrons as laboratory for QCD:  

• Introduction to QCD  

• Bare vs effective effective quarks and gluons 

• Phenomenology of Hadrons  

 Lecture 2: Complex analysis  

Lecture 3: Phenomenology of hadron reactions  

•  Kinematics and observables  

• Space time picture of Parton interactions and Regge phenomena 

• Properties of reaction amplitudes  

Lecture 4: How to extract resonance information from the data  

• Partial waves and resonance properties 

• Amplitude analysis methods (spin complications)
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Identifying resonances 

• Experimental or lattice signatures  (real 
axis data: cross section bumps and 
dips, energy levels)  

• Theoretical signatures (complex plane 
singularities: poles, cusps)   

• What is the interpretation (constituent 
quarks, molecules, …) ? 
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Probing QCD resonances (using physical states)!3

• When (color neutral) mesons and baryons a smashed, their quarks 
overlap, “stick together” and form resonances (quasi QCD eigenstates). 
They are short lived and decay to lowest energy, asymptotic states (pions, 
K’s, proton,…) 

• Resonances are fundamental to our understanding of QCD dynamics  
because they are formed by all-order (aka beyond perturbation theory) 
interactions. Resonances challenge QFT practitioners to develop all 
orders calculations (still ways to go).  

• (QCD) Resonance lead to extremely rich phenomenology, e.g. XYZ 
states, gluonic excitations, etc. 

• In practice, one requires tools that relate asymptotic states before collision 
to asymptotic states after collision that include flexible parametrization of 
the microscopic dynamics. This is often referred to as amplitude analysis. 
The rest of these lectures will focus on this topic.
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Bound states/Resonances/Asymptotic states !4


p2

2me
� ↵

r

�
 (r) = E (r)

↵ = ↵QED =
1

137

Born approximation : “weak” 
perturbation (lowest order) to free 
motion

Bound states: compact wave function 
contains interaction to all orders.   

Resonances: particles interact to all orders (like bound states) 
but eventually decay (connect with asymptotically free states). 
Their effect appears in the S-matrix : Compare (1) and (2) ! 

(2)(1)

(k = iαme)

ψ (r) =
e−ikr

r
− S

e+ikr

r
S = 1 + O(α)

ψ(r) = e−αmer
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Amplitude analyticity: it is much about complex functions   !5

Bound states

Asymptotic states
Resonances

• Scattering amplitude describes evolution between asymptotic states. The 
information related to formation of resonances is “hidden” in unphysical 
domains (sheets) of the kinematical variables. 

• The “bump” in the right figure is an indication of a “hidden” phenomenon. 
To uncover it one needs to analytically continue outside the physical 
sheet. 

s = E2
cm

Aphysical = A(s + iϵ) → A(s = complex)

analytical continuation
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Shrodinger  eq. !6

In non-relativistic potential theory V(x) contains all physics: It determines scattering 
amplitudes, bound state energies, etc. So one should focus on V(x). 

S-amplitude and T (or f) (scattering amplitude) is determined by V but the meaning is more 
general and definitions can be generalized to relativistic (QFT) theory a

[−
d2

dr2
− E +

l(l + 1)
r2

+ V] ul(r) = 0
ul(r) →r→∞ e−ikr − (−1)lSleikr

ul(r) →r→0 rl+1 Sl = 1 + 2ik fl

k f (k, θ) = A(s, t) = ∑
l

(2l + 1)fl(s)Pl(cos θ)
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Shrodinger  eq. !6

In non-relativistic potential theory V(x) contains all physics: It determines scattering 
amplitudes, bound state energies, etc. So one should focus on V(x). 

S-amplitude and T (or f) (scattering amplitude) is determined by V but the meaning is more 
general and definitions can be generalized to relativistic (QFT) theory a

• The Schrodinger eq. implies analyticity (particular realization of causality). Cauchy 
theorem enables to reconstruct an analytical function from its singularities. Thus one 
could imagine recovering the underlying dynamics from the measured S ( or f) 
(Heisenberg program, Mandelstam realization, Bootstrap.) 

• Singularity of f has a physical interpretation (bound states, resonances etc.) 

• In QFT, use relativistic phase space and kinematics. 

[−
d2

dr2
− E +

l(l + 1)
r2

+ V] ul(r) = 0
ul(r) →r→∞ e−ikr − (−1)lSleikr

ul(r) →r→0 rl+1 Sl = 1 + 2ik fl

k f (k, θ) = A(s, t) = ∑
l

(2l + 1)fl(s)Pl(cos θ)
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Bound states, resonances and poles !7

for l=fixed (i.e. integer) suppose -V is big -> ∞ : then 
there will be ∞ number of bound states  n=1,2,... ∞

II

Sl(E) = ∞ for a bound state 
ul(r) ! r�l ! e�ikr � S(l, k)eikr

k2
b = −2mEB = iκ

[−
d2

dr2
− E +

l(l + 1)
r2

+ V] ul(r) = 0

In the E-plane there is a branch point at E=0 
The full plane is cut (to the right) from E=0, it maps onto the Im k>0 half plane 

k = 2mE

physical E-plane 
 (Ist sheet) 

E = |E |eiϕ

0 ≤ ϕ < 2π

bound state 

Eu = |E |

Ed = |E |ei(2π−ϵ)

Eb = − |Eb |

bound state 
ku = 2m |E |kd = − 2m |E |

kb = 2m |Eb |eiπ

= i 2m |Eb |

k = 2mE = 2m |E | eiϕ/2

k-plane
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Bound states, resonances and poles
!8

II

 As -V decreases, some bound states disappear. So what happens to the associate poles ?

Re k

kB =iκbound  
state 

kB =-iκ

virtual 
state 

I

(possible paths 
as -V decreases)

kR =k’-iκ

-kR*= =-k’-iκ
resonance

E =
k2

2m
physical E-plane 
 (Ist sheet) 

unphysical E-sheet  
(2nd sheet) 

“reflection” of  
resonance

There is still an infinite number of resonances, even though the potential is finite !  
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Cutoff potential 
!11

H.M.Nussenzveig , (1959)

E = k2/2m

� = ka
� = a

p
k2 + V0

S-wave
Im k

Re k

bound 
state at EI

V (r) =

⇢
�V0 for r < a
0 for r > a
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Cutoff potential 
!11

H.M.Nussenzveig , (1959)

E = k2/2m

� = ka
� = a

p
k2 + V0

S-wave
Im k

Re k

 kIV  ~ +n π - i∞  
 EII ~ -∞2 - i ∞ 

 kIII = -k*IV  ~ -n π - i∞  
 EII ~ -∞2 + i ∞

increasing 
interaction 
strength 

bound 
state at EI

V (r) =

⇢
�V0 for r < a
0 for r > a
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Cutoff potential 
!11

H.M.Nussenzveig , (1959)

E = k2/2m

� = ka
� = a

p
k2 + V0

S-wave
Im k

Re k

 kIV  ~ +n π - i∞  
 EII ~ -∞2 - i ∞ 

 kIII = -k*IV  ~ -n π - i∞  
 EII ~ -∞2 + i ∞

increasing 
interaction 
strength 

bound 
state at EI

(similar for higher waves)

V (r) =

⇢
�V0 for r < a
0 for r > a
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Potential Well vs Barrier !12

V(r)

r

V(r) r

• Resonances have minimum width 
before they become bound states  

• Average velocity inside the Well is 
always finite 

increasing 
interaction 
strength 

• Resonances move to + ∞ with 
wishing width 
  

• Average velocity of the wave  
infinitesimal -> long time spend 
on top of the barrier   

Γ ∼
1
τ

∼
v
a

a

Every pole is a resonance (positive energy 
finite lifetime) but not all resonances (poles) 

are connected to bound states 

∼
k
a

∼
E − V

a
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Formal theory of scattering !13

• Time evolution pictures: Schrodinger, Heisenberg, Interaction 

H = Hkin + V ! H0 + V (t)

OI(t) = e
iH0O(0)e�iH0t

|tiI = eiH0t|tiS

VI(t) = eiH0V e�iH0te�✏|t|

H0,I(t) = H0

i
d

dt
|tiI = VI(t)|tiI

V ! V (t) = V e�✏|t|

• As t → ± ∞ interaction picture states evolve to eigenstates of Hkin, i.e. to free 
particles 

• At t=0 interactions picture states are solution of the full Hamiltonian

Interaction is switched on adiabatically at t=0 



INDIANA UNIVERSITY

S-matrix and T-matrix : Lippmann-Schwinger !14

i
d

dt
|tiI = VI(t)|tiI |tiI = U(t,�1)|initiali

Sfi = hf(t = +1)|i(t = �1i = hf, (out)|i, (in)i
= hf |U(+1,�1)|ii

U(+1,�1) = P exp

✓
�i

Z +1

�1
dtVI(t)

◆

Evolution  
operator • S-matrix 

• T-matrix 

T = V + V G0V + · · ·

= I � 2⇡i�(Ef � Ei)T

G0 =
1

E �H0

E = Ei = Ef

(t → − ∞)
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Infinite, thin shell !15

Method 1: In coordinate space (as before)  

Method 2: Lippmann-Schwinger

T = V + V G0V + · · ·

V =
�

2µa2
�(r � a) dim� = �1H =

p
2

2µ
+ V

r

V(r)

a

ε

1/ε
“Relation” to QCD  

Inside the shell (0<r<a) particles are 
confined (like quarks in hadrons)  
The shell is thin allowing for free 
asymptotic states (hadron decays) 



INDIANA UNIVERSITY

Solution !16

From method 1

f(k) =

h
�� sin2(ka)

(ka)2

i

h
1 + �

a
sin(ka) cos(ka)

ka

i
� ik

h
�� sin2(ka)

(ka)2

i

f(k) =
K(E)

1� iK(E)k
=

1

K�1(E)� ik

K(E) =
�� sin2(ka)

(ka)2

1 + �
a
sin(ka) cos(ka)

ka

 ∞ of zeros

∞ of  zeros →  
Poles of the amplitude 

E = k2/2µ 

= P (k)
Q(k)

Looks like a K-matrix parametrization 
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Solution !17

From method 2

f(k) =
�� sin2(ka)

(ka)2

1� 1
⇡

R1
0 dE0k0

�� sin2(k0a)

(k0a)2

E0�E(k)

k0 = k(E0) =
p
2µE0

K(E) =
�� sin2(ka)

(ka)2

1� 1
⇡<

R
···

 (∞) zeros of K !

Looks like a Chew-Mandelstam (dispersive) parametrization 

f (k) =
K(E )

1 − ikK(E )

Compare with the K-matrix 

K(E) =
�� sin2(ka)

(ka)2

1 + �
a
sin(ka) cos(ka)

ka
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Analyticity of f !18

• “Conspiracy” between zeros and poles. f has an infinite number of zeros and 
poles (so does K).  The ∞ number of zeros of K(s) is because of the by 
geometry of the sphere (“dynamics”) and this specific “physics” fixes poles of 
the amplitude. Zeros of the amplitude and poles are related (CDD ambiguity)  

• There is an essential singularity at infinity in the physical sheet ! Difficulty in 
writing dispersion relations. This is typical for cut-off potential and possibly 
similar in confining theories (?) (see relation with causality).

f (k = kR + i(kI → ∞)) = O(e+2kIa)

K(E) =
�� sin2(ka)

(ka)2

1 + �
a
sin(ka) cos(ka)

ka

f(k) =

h
�� sin2(ka)

(ka)2

i

h
1 + �

a
sin(ka) cos(ka)

ka

i
� ik

h
�� sin2(ka)

(ka)2

i



INDIANA UNIVERSITY

Shell !19

• For any strength of the potential there is an infinite number of resonances 
• There is one pole in each strip  (n − 1)π < ℜ(βn) < nπ (n = 1,2,⋯)

βn = kna

• as potential strength decreases : 

βn → (n −
1
2

) − i∞

Re k Re k

• as potential strength increases : 

βn → nπ (1 −
1

1 + A ) − i ( nπ
A )

2

A = λ /a
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S-matrix properties (in relativistic theory) !31

• There are no potentials  
• Particles and antiparticles are related by crossing 
• There are NO exact, non perturbative methods in QFT (major 

challenge for mathematicians)  
• Physics lows are manifested as singularities of analytical 

functions (observables) 

First order of business: understand properties of reactions 
enforced by these general principles.  
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S-matrix properties (in relativistic theory) !32

X

f

Pfi = 1

2ImTft =
X

n

2⇡�(Ei � En)T
⇤
fnTni

• Related to transition probability

• Conservation of Probability = Unitarity
Pfi = |hf |S|ii|2 = hi|S†|fihf |S|ii

S†S = I

• Lorentz symmetry: T is a product of Lorentz scalars and covariant factors 
representing wave functions of external states, e.g for  

• Crossing symmetry: the same scalar functions describe all process related by 
permutation of legs between initial and final states (only the wave function change) 

• Analyticity: The scalar functions are analytical functions of invariants 

ū(p1,�1)[A(s, t) + (k1 + k2)µ�
µB(s, t)]u(p2,�2)

v̄(p1, µ1)[A(s, t) + (k1 + k2)µ�
µB(s, t)]u(p2, µ2)

⇡(k1) +N(p1,�1) ! ⇡(k2) +N(p2,�2)

⇡(k1) + ⇡(�k2) ! N̄(�p1, µ1) +N(p2, µ2)
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Lorentz symmetry !33

p2

p3

p4

p1

b

a c

d

u = (p1 � p4)
2 < 0

t = (p1 � p3)
2 < 0

s = (p1 + p2)
2 > (ma +mb)

2
= (E1,cm + E2,cm)2

t = m2
1 +m2

2 � 2E1,cmE2,cm + 2|p1,cm||p2,cm|zs

u = m2
1 +m2

4 � 2E1,cmE4,cm � 2|p1,cm||p4,cm|zs

s+ t+ u =
X

i

m2
i

hp0,�|p,↵i = 2E(p)�(pf � pi)�↵,�

2⇡�(Ef � Ei)iT = hc, d|(S � 1)|a, bi

T = (2⇡)3�(pf � pi)A(s, t, u)

N-to-M scattering depends on 4(N+M)-(N+M)-10 = 3(N+M)-10 invariants 

e.g for 2-to-2: 2 invariants related to the c.m. energy and scattering angle 

Dimensions 

r.h.s has dim = -4
A(s,t,u) is a scalar function of mass dimension =0 
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Question !34

How many independent variables describe 

• Decay proces  A → a + b +c  

• Three particle production A +B → a + b + c
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Helicity amplitudes !35

hp3,�3; p4,�4|A|p1,�1; p2,�2i = A�1,�2,�3,�4(s, t, u)

~S · ~p
|~p| |p,�i = �|p,�i

Sz|p,miz = m|p,miz

|p,�i = R(p̂)⇤(|~p|ẑ  0)|0,miz

|p,miz = ⇤(~p 0)|0,miz

|p,�iz =
SX

m=�S

|p,mizDS
m,�(p̂)

A�1,�2,�3,�4(s, t, u) = ⌘A��1,��2,��3,��4(s, t, u)

We work in the c.m. frame 

Helicity states vs canonical spin states:

Exercise show this:

Parity

• Even though this looks non relativistic it is relativistic. Notion of LS amplitudes, 
LS vs. helicity relations are relativistic  η = naturally 
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Question !36

How many independent scalar functions describe  

J/ψ → π+ π- π0

Ɣ p-> π0 p
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Kinematical vs Dynamical Singularities !37

� = �1 � �2�0 = �3 � �4

M = max(|�|, |�0|)
�1 �2

�4

�3

A�i(s, t) = 16⇡
MX

J=�M

(2J + 1)fJ
�i
(s)dJ�,�0(✓)

fJ
�i
(s) =

1

32⇡

Z 1

�1
dzsA�i(s, t(s, ✓))d

J
�,�0(✓)

For particles with spin 

• Wigner d-functions lead to kinematical singularities 

• Threshold (barrier factors) originate from kinematical factors in relation 
between t and cos(θ) (through dependence of Aλ on t)  

• Unequal masses give lead to “daughter poles”  

• Dynamical singularities : from dynamical (unitary cuts) in A(s,t). 
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Crossing symmetry !38

1

2

3

4

a(p1) + b(p2) → c(p3) + d(p4)

1

2

3

4

1

2

3

4

_

_ _

a(p1) + c(p3) → b(p2)  + d(p4)
_ _ __

_
a(p1) + d(p4)  → c(p3) + b(p2)

___

_

p̄i = �pi = (�~pi,�Ei)

u = (p1 � p4)
2

s = (p1 + p2)
2

t = (p1 � p3)
2

Ec.m

Cos(θ)

Cos(θ)

s = (p1 � p2̄)
2

t = (p1 + p3̄)
2

u = (p1 � p4)
2

u = (p1 + p4̄)
2

s = (p1 � p2̄)
2

t = (p1 � p3)
2

s t u

A(s)
�1,···(s+ i✏, t, u) !

X

�0
1,···

[DS1

�1,�0
1
· · · ]A(t)

�0
1,···

(s, t+ i✏, u) ! · · ·

• The iε is important. Function values at, e.g. s + iε vs s - iε are different ! 
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Crossing Symmetry : Decays !39

1

2

3

4

1

2

3

4

_
a(p1) + b(p2) → c(p3) + d(p4) a(p1) → b(p2) + c(p3) + d(p4)

_

_

M1 > m2 +m3 +m4

A(s, t, u) ! A(M2
1 + i✏, s+ i✏, t+ i✏, u+ i✏)

• In decay kinematics, the decaying mass becomes a dynamical variable, (iε 
important) 

• Crossing from one kinematical region (e.g. s-channel) to another (e.g. t-channel) 
requires taking the corresponding variables off the real axis and to the complex 
plane : analytical continuation.
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Analyticity !40

Feynman diagrams

p2

p3

p4

p1

b

a c

d

k1

p2-k1

1

m2
q � (p2 � k1)2

1

k2

A(p1, · · · ) /
Z
[⇧jd

4kj ]
polynomial in kj

(m2
q � (pi � kj)2 � i✏)((ki � kj)2 � i✏) · · ·

m2 � p2 = [m2 + p2]� (p0)2

m2 � p2 = 0 ! p0 = ±(m2 + p2)1/2

Im

"
1p

m2 + p2 ⌥ i✏� p0

#
= ±⇡�(p0 �

p
m2 + p2)

• Integrand becomes singular when 
intermediate states go on shell. 

• Thresholds for producing physical 
intermediate are the only reason why 
amplitudes are singular. 

• Production of intermediate states is related to 
unitarity. Thus we expect unitarity to 
determine singularities of the amplitudes.  

On the role of iε
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Analyticity and Causality !41

Dispersion relations

source emits a 
signal at t=0

causality: receiver receives at t>0 and not at t<0

amplitude of the signal

consider the Fourier transform (E  → energy)

and extend definition to complex plane E → z, then 
f(z) is holomorphic for Im E > 0

f(t) / ✓(t)

f(E) ⌘
Z

dteiEtf(t)

Causality:  The outgoing wave cannot appear before the incoming one. Causality 
determines analytical properties of the scattering amplitude as function on energy/
momenta/scattering angle. The specific from of these conditions depend on the type of 
interactions and kinematics (e.g. relativistic vs non relativistic) 
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momentum vs energy planes !42

f⇤(k) = f(�k⇤) f⇤(E) = f(E⇤)

E =
k2

2µ

k =
p

2µE

k

E

The function is analytical in the whole E-plane not only the upper half
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How unitarity constrains singularities  !43

2ImTft =
X

n

2⇡�(Ei � En)T
⇤
fnTni

A(s+ i✏) = Aphysical(s = real and above threshold)

• Unitarity “operates” in the physical domain, i.e. s real and above threshold 
and |Cos(θ)|<1. This domain is the boundary of the complex plane  where 
analytical amplitude are defined 

sign fixed by “arrow of time V(t) = V exp(-t |ε|)

• The difference (discontinuity) A(s + iε) - A(s - iε)  ≠ 0 (cf. Feynman diagrams), 
comes from particle production this we expect it being determined by unitarity. 

• Cauchy theorem : singularities determine the amplitude !!! 
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Summary of Lecture 3 !44

• In potential scattering partial wave amplitudes, in 
the energy plane, have branch points on the real 

axis and cuts. They are analytical everywhere else  

• Resonances correspond to poles on the unphysical 
sheet of partial waves 

• Some resonance are bound states. These are 
poles on the real axis on the physical sheet  

• Opening of cuts is due to unitarity. This makes 
sense. When bound states become resonances 

they need to decay, a process “controlled” by  
conservation of probability. They need to move 

away from the physical sheet and unitarity give the 
option to exist by “opening” a cut so that they can 

dive to an unphysical sheet 

• The same happens in relativistic theory. The extra 
complication is existence of “left hand cuts” from 

crossing symmetry. 

• The number of invariant amplitude and variables 
are constrained by Lorentz symmetry + parity.   


