Lecture Plan

Lecture 1: Hadrons as laboratory for QCD:

- Introduction to QCD
- Bare vs effective effective quarks and gluons
- Phenomenology of Hadrons

Lecture 2: Complex analysis

Lecture 3: Phenomenology of hadron reactions

- Kinematics and observables
- Space time picture of Parton interactions and Regge phenomena
- Properties of reaction amplitudes

Lecture 4: How to extract resonance information from the data

- Partial waves and resonance properties
- Amplitude analysis methods (spin complications)

Identifying resonances

- Experimental or lattice signatures (ree axis data: cross section bumps and dips, energy levels)

Reaction amplitudes

- Theoretical signatures (complex plane singularities: poles, cusps)

Microscopic Models
-What is the interpretation (constituent quarks, molecules, ...)?

Hybrids

Mesonic-Molecules

Tetraquarks

Identifying resonances

- Experimental or lattice signatures (rec axis data: cross section bumps and dips, energy levels)

Reaction amplitudes

- Theoretical signatures (complex plane singularities: poles, cusps)

Microscopic Models
-What is the interpretation (constituent quarks, molecules, ...)?

Hybrids

Mesonic-Molecules

Tetraquarks

Probing QCD resonances (using physical states)

- When (color neutral) mesons and baryons a smashed, their quarks overlap, "stick together" and form resonances (quasi QCD eigenstates). They are short lived and decay to lowest energy, asymptotic states (pions, K's, proton,...)
- Resonances are fundamental to our understanding of QCD dynamics because they are formed by all-order (aka beyond perturbation theory) interactions. Resonances challenge QFT practitioners to develop all orders calculations (still ways to go).
- (QCD) Resonance lead to extremely rich phenomenology, e.g. XYZ states, gluonic excitations, etc.
- In practice, one requires tools that relate asymptotic states before collision to asymptotic states after collision that include flexible parametrization of the microscopic dynamics. This is often referred to as amplitude analysis. The rest of these lectures will focus on this topic.

$$
\begin{gather*}
{\left[\frac{p^{2}}{2 m_{e}}-\frac{\alpha}{r}\right] \psi(r)=E \psi(r)} \\
\psi(r)=\frac{e^{-k r}}{r}-s \frac{e^{+i k r}}{r}
\end{gather*}
$$

$$
S=1+O(\alpha)
$$

Born approximation : "weak" perturbation (lowest order) to free motion

Resonances: particles interact to all orders (like bound states) but eventually decay (connect with asymptotically free states).
Their effect appears in the S-matrix : Compare
(1) and (2) !

$$
\left(k=i \alpha m_{e}\right)
$$

$$
A_{\text {physical }}=A(s+i \epsilon) \rightarrow A(s=\text { complex })
$$

analytical continuation

- Scattering amplitude describes evolution between asymptotic states. The information related to formation of resonances is "hidden" in unphysical domains (sheets) of the kinematical variables.
- The "bump" in the right figure is an indication of a "hidden" phenomenon. To uncover it one needs to analytically continue outside the physical sheet.

Shrodinger eq.

In non-relativistic potential theory $\mathrm{V}(\mathrm{x})$ contains all physics: It determines scattering amplitudes, bound state energies, etc. So one should focus on $\mathrm{V}(\mathrm{x})$.

S -amplitude and T (or f) (scattering amplitude) is determined by V but the meaning is more general and definitions can be generalized to relativistic (QFT) theory a

$$
\left.\begin{array}{l}
{\left[-\frac{d^{2}}{d r^{2}}-E+\frac{l(l+1)}{r^{2}}+V\right] u_{l}(r)=0 \begin{array}{l}
u_{l}(r) \rightarrow_{r \rightarrow \infty} e^{-i k r}-(-1)^{l} S_{l} e^{i k r} \\
u_{l}(r) \rightarrow_{r \rightarrow 0} r^{l+1}
\end{array} S_{l}=1+2 i k f_{l}}
\end{array}\right\}
$$

Shrodinger eq.

In non-relativistic potential theory $\mathrm{V}(\mathrm{x})$ contains all physics: It determines scattering amplitudes, bound state energies, etc. So one should focus on $\mathrm{V}(\mathrm{x})$.

S-amplitude and T (orf) (scattering amplitude) is determined by V but the meaning is more general and definitions can be generalized to relativistic (QFT) theory a

$$
\begin{aligned}
& {\left[-\frac{d^{2}}{d r^{2}}-E+\frac{l(l+1)}{r^{2}}+V\right] u_{l}(r)=0 \begin{array}{l}
u_{l}(r) \rightarrow_{r \rightarrow \infty} e^{-i k r}-(-1)^{l} S_{l} e^{i k r} \\
u_{l}(r) \rightarrow_{r \rightarrow 0} r^{l+1}
\end{array} S_{l}=1+2 i k f_{l}} \\
& k f(k, \theta)=A(s, t)=\sum_{l}(2 l+1) f_{l}(s) P_{l}(\cos \theta)
\end{aligned}
$$

- The Schrodinger eq. implies analyticity (particular realization of causality). Cauchy theorem enables to reconstruct an analytical function from its singularities. Thus one could imagine recovering the underlying dynamics from the measured S (or f) (Heisenberg program, Mandelstam realization, Bootstrap.)
- Singularity of f has a physical interpretation (bound states, resonances etc.)
- In QFT, use relativistic phase space and kinematics.

$$
\left[\begin{array}{rr}
\left.-\frac{d^{2}}{d r^{2}}-E+\frac{l(l+1)}{r^{2}}+V\right] u_{l}(r)=0 & \begin{array}{c}
\text { for l=fixed (i.e. integer) suppose }-\mathrm{V} \text { is big }->\infty: \text { then } \\
\text { there will be } \infty \text { number of bound states } \mathrm{n}=1,2, \ldots \infty
\end{array} \\
u_{l}(r) \rightarrow r \psi_{l} \rightarrow e^{-i k r}-S(l, k) e^{i k r}
\end{array}\right.
$$

In the E-plane there is a branch point at $\mathrm{E}=0$
The full plane is cut (to the right) from $E=0$, it maps onto the $\operatorname{lm} k>0$ half plane

As -V decreases, some bound states disappear. So what happens to the associate poles ?

There is still an infinite number of resonances, even though the potential is finite !

Scattering in a potentid well.

$$
\begin{aligned}
& \psi(\vec{r})-R(r) Y_{\text {cm }}(\mathbb{R}) \rightarrow R(r)=\frac{\mu(r)}{r} \\
& -\frac{-d^{2} u}{2 d r^{2}}+v|r| a=E x \quad r<0 \quad-\frac{1}{i} \frac{\lambda^{2} u}{d \alpha^{2}}-v_{0} u=E m \\
& \mu|r|=\sin \varepsilon^{\prime} r \\
& \text { v) a } u(s)=A \sin h r+B \cos k r \quad k^{\prime}=\sqrt{2\left(E+v_{0}\right)}
\end{aligned}
$$ m

$\varepsilon=\sqrt{i i}$
$A \sin k a+B \cosh a-\sin ^{\prime} a$
$+k A \cos k \sigma-B \quad h \sin k a=$ inoska
$\binom{\sin 2 a \cos k n}{k \cos k a-k \sin k a}\binom{A}{B}=\binom{\sin z^{\prime} a}{k^{\prime} \cos k a}$

A: $\frac{k \text { sinta sivita }+ \text { colka cosh'a } c^{\prime}}{k}$
$B=k \cosh a \sin t x^{2} x-\sin k x \cos \cos ^{\prime} x^{\prime}$

Cutoff potential

$$
\begin{gathered}
E=k^{2} / 2 m \\
S_{\imath}(\beta)=-\frac{\beta \eta_{l}(\alpha) h_{l}^{\prime(2)}(\beta}{\beta l_{\imath}(\alpha) h_{l}^{(1)}(\beta} \\
\beta=k a \\
\alpha=a \sqrt{k^{2}+V_{0}}
\end{gathered}
$$

$$
S_{l}(\beta)=-\frac{\beta \eta_{l}(\alpha) h_{l}^{h^{\prime 2}}(\beta)-\alpha \jmath_{l}^{\prime}(\alpha) h_{l}^{(2)}(\beta)}{\beta \eta_{l}(\alpha) h_{l}^{(1)}(\beta)-\alpha \jmath_{l}^{\prime}(\alpha) h_{l}^{(1)}(\beta)},
$$

$$
V(r)=\left\{\begin{array}{c}
-V_{0} \text { for } r<a \tag{11}\\
0 \text { for } r>a
\end{array}\right.
$$

S-wave

Fig 1 The poles β_{n} of $S_{0}(\beta)$ for a potential well
$\square n=0$, - $n= \pm 1 \quad$ On $n= \pm 2 \quad n= \pm 3$
The numbers beside the poles give the corresponding values of A The curves in full hine are the paths described by the poles The bisectors of the third and fourth quadrants are also indicated

Cutoff potential

$$
\begin{aligned}
& E=k^{2} / 2 m \\
& S_{l}(\beta)=-\frac{\beta \eta_{l}(\alpha) h_{l}^{\prime(2)}(\beta)-\alpha j_{l}^{\prime}(\alpha) h_{l}{ }^{(2)}(\beta)}{\beta \eta_{l}(\alpha) h_{l}^{(1)}(\beta)-\alpha y^{\prime}{ }_{l}(\alpha) h_{l}^{(1)}(\beta)}, \\
& \beta=k a \\
& \alpha=a \sqrt{k^{2}+V_{0}} \\
& \uparrow \text { increasing } \\
& \text { interaction } \\
& \text { strength } \\
& k_{\text {III }}=-k^{*} \text { IV } \sim-n \pi-1 \infty \\
& \text { S-wave } \\
& E_{\text {II }} \sim-\infty^{2}+i \infty \\
& \text { Fig } 1 \text { The poles } \beta_{n} \text { of } S_{0}(\beta) \text { for a potential well } \\
& \square n=0 . \quad \bullet= \pm 1 \quad \text { ○ } n= \pm 2 \quad n= \pm 3 \\
& k_{\text {IV }} \sim+n \pi-i \infty \\
& \text { aI } \sim-\infty^{2}-\mathrm{i} \infty \\
& \text { The numbers beside the poles give the corresponding values of } A \text { The curves in full hoe are } \\
& \text { the paths described by the poles The bisectors of the third and fourth quadrants are also } \\
& \text { indicated }
\end{aligned}
$$

$$
V(r)=\left\{\begin{array}{c}
-V_{0} \text { for } r<a \tag{11}\\
0 \text { for } r>a
\end{array}\right.
$$

$$
V(r)=\left\{\begin{array}{c}
-V_{0} \text { for } r<a \tag{11}\\
0 \text { for } r>a
\end{array}\right.
$$

$$
\begin{aligned}
& E=k^{2} / 2 m \\
& S_{l}(\beta)=-\frac{\beta \eta_{l}(\alpha) h_{l}^{h^{\prime 2}}(\beta)-\alpha \jmath_{l}^{\prime}(\alpha) h_{l}{ }^{(2)}(\beta)}{\beta \eta_{l}(\alpha) h_{l}^{h^{(1)}}(\beta)-\alpha \jmath^{\prime}{ }_{l}(\alpha) h_{l}^{(1)}(\beta)}, \\
& \beta=k a \\
& \alpha=a \sqrt{k^{2}+V_{0}} \\
& \text { (similar for higher waves) } \\
& \text { Fig } 1 \text { The poles } \beta_{n} \text { of } S_{0}(\beta) \text { for a potential well } \\
& \square n=0 \text {. ○ } n= \pm 1 \quad \text { ○ } n= \pm 2 \quad n= \pm 3 \\
& k_{\text {IV }} \sim+n \pi-i \infty \\
& E_{I I} \sim-\infty^{2}-\mathrm{i} \infty \\
& \text { The numbers beside the poles give the corresponding values of } A \text { The curves in full one are } \\
& \text { the paths described by the poles The bisectors of the third and fourth quadrants are also } \\
& \text { indicated }
\end{aligned}
$$

- Resonances have minimum width before they become bound states
- Average velocity inside the Well is always finite

$$
\begin{aligned}
\Gamma & \sim \frac{1}{\tau} \sim \frac{v}{a} \\
\sim & \frac{k}{a} \sim \frac{\sqrt{E-V}}{a}
\end{aligned}
$$

Every pole is a resonance (positive energy finite lifetime) but not all resonances (poles) are connected to bound states

- Resonances move to $+\infty$ with wishing width
- Average velocity of the wave infinitesimal -> long time spend on top of the barrier

$$
H=H_{k i n}+V \rightarrow H_{0}+V(t) \quad V \rightarrow V(t)=V e^{-\epsilon|t|}
$$

Interaction is switched on adiabatically at $\mathrm{t}=0$

- Time evolution pictures: Schrodinger, Heisenberg, Interaction

$$
\begin{aligned}
& O_{I}(t)=e^{i H_{0}} O(0) e^{-i H_{0} t} \\
& |t\rangle_{I}=e^{i H_{0} t}|t\rangle_{S} \\
& \begin{array}{l}
H_{0, I}(t)=H_{0} \\
V_{I}(t)=e^{i H_{0}} V e^{-i H_{0} t} e^{-\epsilon|t|} \\
i \frac{d}{d t}|t\rangle_{I}=V_{I}(t)|t\rangle_{I}
\end{array} \\
& \longrightarrow \quad i \frac{d}{d t}|t\rangle_{I}=V_{I}(t)|t\rangle_{I}
\end{aligned}
$$

- As $t \rightarrow \pm \infty$ interaction picture states evolve to eigenstates of $H_{k i n}$, i.e. to free particles
- At $t=0$ interactions picture states are solution of the full Hamiltonian
$i \frac{d}{d t}|t\rangle_{I}=V_{I}(t)|t\rangle_{I}$
- S-matrix

$$
|t\rangle_{I}=\underset{\substack{\text { Evolution } \\
\text { operator }}}{U(t,-\infty) \mid(t \rightarrow-\infty)} \left\lvert\, \begin{aligned}
& \text { initial }\rangle \\
& \left(y^{\text {in }}\right.
\end{aligned}\right.
$$

$$
\begin{aligned}
& \left.S_{f i}=\langle f(t=+\infty)| i(t=-\infty\rangle=\langle f,(\text { out })| i,(\text { in })\right\rangle \\
& \quad=\langle f| U(+\infty,-\infty)|i\rangle \\
& U(+\infty,-\infty)=\mathcal{P} \exp \left(-i \int_{-\infty}^{+\infty} d t V_{I}(t)\right)=I-2 \pi i \delta\left(E_{f}-E_{i}\right) T
\end{aligned}
$$

- T-matrix

$$
\begin{aligned}
T=V+V G_{0} V+\cdots \quad G_{0}= & \frac{1}{E-H_{0}} \\
& E=E_{i}=E_{f}
\end{aligned}
$$

$$
H=\frac{p^{2}}{2 \mu}+V \quad V=\frac{\lambda}{2 \mu a^{2}} \delta(r-a) \quad \operatorname{dim} \lambda=-1
$$

"Relation" to QCD
Inside the shell $(0<r<a)$ particles are confined (like quarks in hadrons) The shell is thin allowing for free asymptotic states (hadron decays)

Method 1: In coordinate space (as before)

Method 2: Lippmann-Schwinger

$$
T=V+V G_{0} V+\cdots
$$

From method 1 Looks like a K-matrix parametrization

$$
\begin{aligned}
& f(k)=\frac{\left[-\lambda \frac{\sin ^{2}(k a)}{(k a)^{2}}\right]}{\left[1+\frac{\lambda}{a} \frac{\sin (k a) \cos (k a)}{k a}\right]-i k\left[-\lambda \frac{\sin ^{2}(k a)}{(k a)^{2}}\right]} \\
& f(k)=\frac{K(E)}{1-i K(E) k}=\frac{1 \quad \mathrm{E}=\mathrm{k}^{2} / 2 \mu}{K^{-1}(E)-i k} \\
& K(E)=\frac{-\lambda \frac{\sin ^{2}(k a)}{(k a)^{2}}}{1+\frac{\lambda}{a} \frac{\sin ^{(k a) \cos (k a)}}{k a}=\frac{P(k)}{Q(k)} \quad \begin{array}{l}
\infty \text { of zeros } \\
\begin{array}{l}
\infty \\
\text { Poles zef the amplitude }
\end{array}
\end{array}}
\end{aligned}
$$

From method 2 Looks like a Chew-Mandelstam (dispersive) parametrization

$$
f(k)=\frac{-\lambda \frac{\sin ^{2}(k a)}{(k a)^{2}} \quad\left({ }^{(\infty) \text { zeros of } \mathrm{K}!}\right.}{1-\frac{1}{\pi} \int_{0}^{\infty} d E^{\prime} k^{\prime} \frac{-\lambda \frac{\sin ^{2}\left(k^{\prime} a\right)}{\left(k^{\prime} a\right)^{2}}}{E^{\prime}-(k)}}
$$

Compare with the K-matrix

$$
k^{\prime}=k\left(E^{\prime}\right)=\sqrt{2 \mu E^{\prime}}
$$

$$
f(k)=\frac{K(E)}{1-i k K(E)}
$$

$K(E)=\frac{-\lambda \frac{\sin ^{2}(k a)}{(k a)^{2}}}{1-\frac{1}{\pi} \Re \int \cdots}$

$$
K(E)=\frac{-\lambda \frac{\sin ^{2}(k a)}{(k a)^{2}}}{1+\frac{\lambda}{a} \frac{\sin (k a) \cos (k a)}{k a}}
$$

Analyticity of \mathbf{f}

$$
\begin{aligned}
& f(k)=\frac{\left[-\lambda \frac{\sin ^{2}(k a)}{(k a)^{2}}\right]}{\left[1+\frac{\lambda}{a} \frac{\sin (k a) \cos (k a)}{k a}\right]-i k\left[-\lambda \frac{\sin ^{2}(k a)}{(k a)^{2}}\right]} \\
& K(E)=\frac{-\lambda \frac{\sin ^{2}(k a)}{(k a)^{2}}}{1+\frac{\lambda}{a} \frac{\sin (k a) \cos (k a)}{k a}}
\end{aligned}
$$

- "Conspiracy" between zeros and poles. f has an infinite number of zeros and poles (so does K). The ∞ number of zeros of $K(s)$ is because of the by geometry of the sphere ("dynamics") and this specific "physics" fixes poles of the amplitude. Zeros of the amplitude and poles are related (CDD ambiguity)
- There is an essential singularity at infinity in the physical sheet ! Difficulty in writing dispersion relations. This is typical for cut-off potential and possibly similar in confining theories (?) (see relation with causality).

$$
f\left(k=k_{R}+i\left(k_{I} \rightarrow \infty\right)\right)=O\left(e^{+2 k_{1} a}\right)
$$

- For any strength of the potential there is an infinite number of resonances
- There is one pole in each strip $\quad(n-1) \pi<\mathfrak{R}\left(\beta_{n}\right)<n \pi(n=1,2, \cdots)$

$$
\beta_{n}=k_{n} a
$$

- as potential strength decreases :

$$
\beta_{n} \rightarrow\left(n-\frac{1}{2}\right)-i \infty
$$

- as potential strength increases :
$\beta_{n} \rightarrow n \pi\left(1-\frac{1}{1+A}\right)-i\left(\frac{n \pi}{A}\right)^{2}$
$A=\lambda / a$

Simple model tov bow. extaval patilal le.g ís con accrss "qual woel" states

$$
\begin{array}{ll}
V(v)=\frac{\lambda}{2 \mu} \delta(r-a)-\frac{d^{2} u}{d^{2}}+V(v)=(u(v) & L \mu \varepsilon=v^{2} \\
u=\sin <a e^{\text {vegulu } a+r=0} & x<a
\end{array} \quad \lambda=\frac{\hat{\lambda}}{a^{2}} \quad l
$$

M: A sincat $B \cos 4 a \quad x>a$ fve wae.
at a: $A \sin k a+B \cosh A=\sin 2 a$

$$
\begin{aligned}
& \text { akAcosba }-a b b \sin u=a^{2} \operatorname{coshn}+\lambda \sin M_{a} \\
\Rightarrow & f=\cdots \quad \text { Boud sicles }=\cdots \quad \begin{array}{r}
-u_{+}+u_{-}+V=0 \\
u_{+}+v_{-}+v
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { In nika-1Besh } a=\text { Sik } a \\
& +A^{\prime} \angle \cos 2 a-B^{\prime} \angle \text { sivica }=k a r k a+\lambda s \\
& \left(\begin{array}{cc}
-k s & -c \\
-k c & s
\end{array}\right)\binom{c}{k c+\lambda s}=\binom{A}{B} \quad \begin{array}{l}
A=-k_{a}-\lambda c s \\
B=\lambda s^{2} a
\end{array} \\
& n(v) 0): A\left[\frac{e^{i v v}-e^{-i u_{v}}}{i} J+n l^{e^{i h}+e^{-i n}}\right] \text { (lage distcres } \\
& \text { awy frow seatiters) } \\
& =-\frac{i}{i} i^{i i_{0}}[A-i b]+\frac{1}{i} i^{+i b_{v}}[A+B]
\end{aligned}
$$

$$
\begin{aligned}
& \text { incowy compre w.th ther: } e^{-i x r}-e^{\text {tizr }} \\
& -S \\
& S=\frac{A+i s}{A-i B} \quad f: \frac{s-1}{2 i}=\frac{B}{A-i B}=\frac{a \lambda s^{2}}{-\varepsilon_{a}-\lambda_{a} c s-i x_{a} s^{2}} \\
& f=\frac{a^{x} \sin ^{2} c a}{-a^{2} k-x_{a} \sin \left(2 a \cos u_{a}-i_{a} \times \sin ^{2} u_{2}^{\prime}\right.} ; \frac{1}{-\frac{[k+x s c]}{7 s^{2}}-i} \\
& \tilde{f}=\frac{f}{k}=\frac{1}{k^{-1}-i k} \quad k^{-1}=-\left[1+\lambda\binom{s}{k} c\right]\binom{\frac{k}{\xi}}{\xi}^{2} \frac{1}{\lambda}
\end{aligned}
$$

$$
\begin{aligned}
& K^{-1}=-\left[1+\lambda\left(\frac{s}{k}\right) c\right]\left(\begin{array}{l}
\left.\left.\frac{k}{3}\right)^{2} \frac{1}{\lambda} \quad \lambda=1 \quad a=1,1\right)=1
\end{array}\right. \\
& \sin a^{\prime} c \quad \varepsilon=\frac{\pi}{a} m
\end{aligned}
$$

$k^{-1}-i k$ will have leves in He strike

$$
\begin{aligned}
& \frac{a \pi}{a}<\sec <\frac{(x+1) \pi}{a} \quad \text { ma } 0,1, \cdots \\
& a+^{\prime} L=0 \Rightarrow f^{-1}=-1-\lambda \text { is finite. }
\end{aligned}
$$

($f=r<0, \lambda \approx-1$ ther is an additonal stale, near sew eneigy bound state.)
(1) Poles of $K^{-1} \Rightarrow$ zevos ot aupliturle $\Rightarrow C D D$ pobs. near bews of f^{-1} thera are poles a vesovares intle lient of $A \rightarrow \infty \Rightarrow$

\Rightarrow Poles (resoncos) coue to the val afis $k=\left(n+1, \frac{\pi}{2}\right) / a$
\Rightarrow this violutis unitut:

It is indecistg L stuig asspratutic bobaion al $f(u)$ ta'e $k=i R \quad R \rightarrow \infty$ (upper lelf place)

$$
f: \begin{aligned}
& \frac{x \sin ^{2} c a \rightarrow e^{2 R}}{-k->\sin \operatorname{cas} \cos k_{a}-i \times \sin ^{2} u_{i} \quad \sin c \rightarrow \frac{1}{2}\left(-e^{R}\right)} \\
& +\frac{x}{4} \frac{1}{i} e^{2 n}+\frac{i x}{4} e^{1 n} \rightarrow \infty e^{2 n} \quad \text { cuh } \rightarrow \frac{1}{i}\left(e^{2}\right)
\end{aligned}
$$

$f \rightarrow$ blows up expouption as e^{R} inde uppe plape.

$$
\begin{aligned}
& k \rightarrow-i l \sum_{2 \rightarrow \infty} \quad \sin h \rightarrow \frac{1}{i} e^{n} \quad \cosh \rightarrow \\
& i \\
& e^{12} \\
& \leadsto-\frac{x}{4} \frac{1}{i} e^{22}+i \frac{x}{4} e^{2 \pi} \sim e^{22} \quad f \rightarrow \cos t
\end{aligned}
$$

\Rightarrow the blow up is velated h existare of ω of pros/ran

Ofien one emplusiges disposjor artion.

$$
\begin{aligned}
& f^{x}(k)=f\left(-x^{*}\right) \\
& \text { pore at } k \\
& \text { cos a wiov } \\
& \text { at }-k^{*}
\end{aligned}
$$

Cousider $\hat{f}=\tilde{f} e^{+2 i k a} \Rightarrow$ cornerget inde upar plant. there is ∞ of poles in the uppor plue.

$$
\hat{f}(k)=\sum_{i i i}^{+\infty} \int_{-\infty}^{+\infty} d k^{\prime} \frac{\hat{f}\left(k^{\prime}\right)}{k^{\prime}-k}+\int_{c \infty}^{\infty}>0
$$

to write tlis one ueeds tho kwow the assyuptolic belovor \rightarrow this is wanitatation of the (∞) qeeos/pobss.

Alternatively one (uld use the lowe halt plae \therefore there one nueds the resonues explicityy
(as we'll spe the dath is on upper plael)

Use energy blare
$K=\sqrt{E L} \mu$ use the following detruxiation $\sqrt{z}=\sqrt{12} 1 e^{i \phi}=$ live $i \varphi_{i}$

$$
\begin{aligned}
& f^{x} \quad k>0 \\
& 1 / 1 / 1 / 1 / 1 /
\end{aligned}
$$

$$
\underset{\sim}{*} \mid E+i \varepsilon)=f(E-i \varepsilon)
$$

$$
=-\sqrt{|\varepsilon|}(1-i c)=-\sqrt{|\varepsilon|} \mid i \varepsilon
$$

one con write diperian for $f(t)$

$$
\begin{aligned}
& l_{i}^{i}\left[\int_{+\infty}^{0} d t^{\prime} \frac{\hat{f}\left(t^{\prime}-i z\right)}{i^{\prime}-\varepsilon}+\int_{0}^{\infty} d E^{\prime} \frac{\hat{f}\left(\varepsilon^{\prime}+i c\right)}{E^{\prime}-\varepsilon}\right]=\frac{1}{i, i} \int_{0}^{\infty} \frac{2 i I m f(i+i)}{t^{\prime}-\varepsilon} \\
& \rightarrow f(\varepsilon)=\frac{1}{i_{1}} \int_{0}^{\infty} d \varepsilon^{\prime} \frac{j \ln f\left(i^{\prime}\right)}{E^{\prime}-E}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\hat{f}=\frac{x \sin ^{2} c a e^{2 i k a}}{-k-\lambda \sin 2 a \cos h a-i \times \sin ^{2} u_{2}} \times \frac{1}{k} \right\rvert\, \hat{f}: e^{2 i b a} \tilde{f} \\
& \left.|m \tilde{f}=k| \tilde{f}\right|^{2} \in \text { unitaiy. } \Rightarrow \text { Lioprian relction wald ivvop } \\
& \text { foils! }
\end{aligned}
$$

Wat we uned $\hat{f} \Rightarrow$ wevere intourton flen dispeion recatia:
What abour $\frac{1}{f} \Rightarrow \operatorname{lm} \frac{1}{f}=i k$, It coneres assuptationg
but veeds ∞ ot proses (CDD).
Suprosed the subhicta were wl need.

$$
\begin{aligned}
& { }^{m} f^{\prime} f=k|f|^{2} \Rightarrow \text { neasen. } \\
& f(t)=\eta_{i}^{\prime} \int d E^{\prime} \frac{\ln f\left(t^{\prime}\right)}{e^{-} \cdot E^{-}} \Rightarrow \text { continis. } \\
& \text { it intes lns }
\end{aligned}
$$

$$
\hat{f}=\frac{x \sin ^{2} c a e^{2 i k a}}{-k-7 \sin 2 a \cos k a-i \times \sin ^{2} u_{i}} \times \frac{1}{k}
$$

ve unitutize Ban: $\quad t_{B}=>\sin ^{2} x_{a}$

$$
\begin{aligned}
& f=\frac{-x \sin ^{2} h / k}{2+\int \frac{x \sin ^{\prime} h / k}{\epsilon^{\prime}-E}} \frac{1}{k} \\
& f=\frac{\left(-+\sin ^{2} \varphi a / L\right)}{\left(2-\int \frac{\left(->b^{-i \alpha} / z^{\prime}\right)}{E^{\prime}-E}\right)} \dot{E}^{\prime}=\frac{N}{n-\int \frac{\rho N}{E^{\prime}-E}} \quad s=k \\
& i f=\frac{1}{\mu} \cdot \frac{1}{j} \int 3 \frac{N}{\varepsilon^{-N}} \quad \operatorname{lm} \frac{1}{f}=-i \rho \\
& \frac{1}{r}=\operatorname{dix}+\underset{\sim}{p l e s} \quad \text { 't conegst } \\
& \frac{k}{\sin }+\frac{x \operatorname{ch}^{2}}{\sin k}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\bar{h}^{\prime} \mid \bar{u}\right)=(2 \pi,)^{3} \delta^{3}\left(u^{\prime}-\dot{u}\right)=\left(2 \pi n^{3} \frac{1}{k^{2}} \delta\left(u^{\prime} \cdot u\right) \delta^{2}\left(\Omega^{\prime} \cdot \Delta\right)=\right. \\
& =(i i)^{3} \frac{1}{k^{2}}\left(\frac{d k}{d z}\right)^{-1} \delta\left(t^{\prime} \cdot c \left\lvert\, \delta^{1}\left(s^{\prime} \cdot \sigma\right) \quad E=\frac{k^{2}}{i \mu}\right.\right. \\
& \left.=(l i=)^{3}-\mu \delta\left(E^{\prime} \cdot E\right) \delta^{2}(d)^{\prime} \cdot d\right)=(2 i=)^{3} \frac{1}{k \mu} \delta\left|e^{\prime} \cdot e^{2}\right| \sum Y^{k}\left(\Omega^{\prime}\right) Y(d \Omega) \\
& \text { \& } V+u h_{u} v+\ldots \\
& \left.C u^{\prime}\left|S(k): m-(2 i) \delta\left(t^{\prime} \cdot \varepsilon\right): \angle u^{\prime}\right| T \mid k\right) \\
& \left.C h^{\prime}|\Gamma| \frac{1}{2}\right)=E T_{e} Y_{\text {em }} Y_{\text {lem }} \\
& \left.L_{u}^{-1}|s| l_{c}\right\rangle=\left(\left.2 i\right|^{3} \frac{1}{k_{\mu}} \delta\left|\varepsilon^{\prime} \cdot \varepsilon\right| \sum_{\text {er }} Y_{\operatorname{lec}} Y_{\operatorname{sen}} X\right. \\
& {[1 \underbrace{\left.-\frac{1}{(2 i)^{2}} \frac{(2 i)}{4}(2 \mu) k T\right)}_{S_{l}}} \\
& S_{e} S_{l}^{k}=1 \quad S_{l}=e^{2 i \delta} \quad[\cdot-]=1+2 i k f_{l}=e^{2 i \delta} \\
& \Rightarrow f_{i}=\frac{\left(e^{e^{i r}}-1\right)}{i \cdot k}: \frac{e^{i \sigma} r r}{k} \\
& \left.f_{l}=\frac{1}{(40)^{2}} \underset{-1}{\left(2 \mu T_{C}\right)} \sim_{\text {nits }} T_{1}=L \varepsilon \right\rvert\, \cup(k):-3+1=-2 \\
& \left.\left.\left\langle\vec{h}^{\prime}\right| T\right|_{l} ^{-1}\right\rangle=\bar{I}_{l} Y_{\ell \omega}-1_{1 m}=\sum_{l} \frac{(l l+1)}{2 \pi} T_{l} T_{l}(\cos \theta) \\
& T_{e}=\frac{1}{2} \int d t \operatorname{Pe}(1008) 4 \pi \angle \bar{h}^{\prime} \left\lvert\, \pi(\nu) \Rightarrow f_{e}==\frac{1}{2}\left(\frac{1}{2 \pi}\right) S_{t}\left(P_{1}(t)\left\langle h^{\prime}\right| 2, y\right) l^{\prime}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.f_{e}=-\frac{1}{2}\left(\frac{1}{4 m}\right) S t+y(x)\left\langle n^{\prime}\right| 2 \mu\right) h^{\prime} \\
& \left.f_{1}=-\frac{1}{2}\left(\frac{1}{4} f_{6}\right) \int A_{z} P_{l}\left(\frac{1}{2 k}\right),\left\langle b^{\prime}\right| 2_{\mu} T \mid L\right) \\
& \tau_{\mu} T=U+U G_{0} U+\ldots \quad \operatorname{Sos}_{0}=\frac{1}{2_{\mu}+1-2_{\mu E}} \\
& \text { Toke } V=\frac{A}{2 \mu a^{2}} \delta(r-a) \quad \text { [A] }=-1 \\
& L u^{\prime}\left(l_{\mu} u^{\prime \prime} c\right)=\int a^{3} y e^{i n x} e^{-i u x} \frac{A}{a^{\prime}} \delta(r-a)\left\{e^{i r}=\sum_{i}^{2} j_{1}(b x) i^{L} 4 \pi y y\right. \\
& =\left[\dot{\omega}_{l}(k a)\right]^{2} A(l \ell+1) P_{l}\left(f_{>4}\right) 4 \pi \\
& \therefore \therefore_{i / \pi}^{\prime} \int_{1}^{2} d z D_{1}(\psi)=-j_{1}^{2}(k a) A=-\frac{\sin ^{2} k_{a}}{(4 a)^{2}} A
\end{aligned}
$$

$$
\begin{aligned}
& f_{0}=-\frac{1}{4 \pi} \frac{\operatorname{sun}^{2} h_{a}}{(k a)^{2}} A \\
& f_{e}=-\frac{1}{2}\left(\frac{1}{m m}\right) S t t_{r}(x)\left\langle h^{\prime}\right| h_{2}, l^{\prime}
\end{aligned}
$$

cominute in $2^{\text {nd }}$ ader:

$$
\begin{aligned}
& L h^{\prime} \left\lvert\, q_{\mu} V b_{0} 2_{\mu} V(u)=\int d x e^{i b_{y}^{\prime}} \frac{A}{a^{2}} \delta\left(r-a \left\lvert\, c_{0} \frac{A}{a^{2}} \delta\left(r^{\prime}-a\right) e^{\therefore h x^{\prime}}\right.\right.\right. \\
& \left.C_{v} \mid x, x\right)=\frac{1}{(2 i)^{3}} e^{-i \varepsilon^{\prime \prime}\left(x-x^{\prime}\right)} \frac{1}{k^{2}-2 \mu E} \quad(-1) \\
& \left.\left\langle u^{\prime}\right| l_{\mu} u \mid c^{\prime \prime}\right)=\sum_{l} j_{l}^{2} A(2 l+1) P_{l}(x) 4 \pi=\sum_{e} j_{l}^{2} A(u \pi)^{2} y y
\end{aligned}
$$

$$
\begin{aligned}
& \int \frac{u^{2} d h}{(2 h)^{g}}\left(k_{n}\right)^{3} j l^{4} A^{2}(11+1) \frac{1}{4-l \mu E}+P_{l}(-1 /) \frac{1}{4 \pi}(-1) \\
& \Theta=\frac{(4 \pi)^{2}}{\frac{2}{2}(21)^{3}} \quad \int k^{2} d k A^{2}(k x) \frac{j e^{4}}{k^{1}-1 \mu i}=(\overbrace{}^{2} \frac{2}{\pi} \int \frac{k^{2} d k}{x^{2}-\nu_{\mu} E} \\
& \frac{d E}{\lambda x}=\frac{k}{\mu} \quad d \varepsilon=\frac{d u}{d i} d F=\frac{\mu}{k} d E=\frac{2}{2} \frac{\mu x d E}{\frac{v^{2}}{2}-1 i}=\frac{4}{i} \frac{4 d E}{E}
\end{aligned}
$$

- There are no potentials
- Particles and antiparticles are related by crossing
- There are NO exact, non perturbative methods in QFT (major challenge for mathematicians)
- Physics lows are manifested as singularities of analytical functions (observables)

First order of business: understand properties of reactions enforced by these general principles.

S-matrix properties (in relativistic theory)

- Related to transition probability

$$
\left.P_{f i}=|\langle f| S| i\right\rangle\left.\right|^{2}=\langle i| S^{\dagger}|f\rangle\langle f| S|i\rangle
$$

- Conservation of Probability = Unitarity

$$
\begin{aligned}
& \sum_{f} P_{f i}=1 \\
& \quad S^{\dagger} S=I
\end{aligned}
$$

$$
2 I m T_{f t}=\sum_{n} 2 \pi \delta\left(E_{i}-E_{n}\right) T_{f n}^{*} T_{n i}
$$

- Lorentz symmetry: T is a product of Lorentz scalars and covariant factors representing wave functions of external states, e.g for $\pi\left(k_{1}\right)+N\left(p_{1}, \lambda_{1}\right) \rightarrow \pi\left(k_{2}\right)+N\left(p_{2}, \lambda_{2}\right)$

$$
\bar{u}\left(p_{1}, \lambda_{1}\right)\left[A(s, t)+\left(k_{1}+k_{2}\right)_{\mu} \gamma^{\mu} B(s, t)\right] u\left(p_{2}, \lambda_{2}\right)
$$

- Crossing symmetry: the same scalar functions describe all process related by permutation of legs between initial and final states (only the wave function change)

$$
\begin{aligned}
& \pi\left(k_{1}\right)+\pi\left(-k_{2}\right) \rightarrow \bar{N}\left(-p_{1}, \mu_{1}\right)+N\left(p_{2}, \mu_{2}\right) \\
& \bar{v}\left(p_{1}, \mu_{1}\right)\left[A(s, t)+\left(k_{1}+k_{2}\right)_{\mu} \gamma^{\mu} B(s, t)\right] u\left(p_{2}, \mu_{2}\right)
\end{aligned}
$$

- Analyticity: The scalar functions are analytical functions of invariants

N-to-M scattering depends on $4(N+M)-(N+M)-10=3(N+M)-10$ invariants
e.g for 2-to-2: 2 invariants related to the c.m. energy and scattering angle

$$
\begin{aligned}
& \text { (p) } \\
& \begin{array}{l}
s=\left(p_{1}+p_{2}\right)^{2}=\left(E_{1, c m}+E_{2, c m}\right)^{2} \\
t=\left(p_{1}-p_{3}\right)^{2}
\end{array} \\
& t=m_{1}^{2}+m_{2}^{2}-2 E_{1, c m} E_{2, c m}+2\left|p_{1, c m}\right|\left|p_{2, c m}\right| z_{s} \\
& u=\left(p_{1}-p_{4}\right)^{2} \quad s+t+u=\sum_{i} m_{i}^{2} \\
& u=m_{1}^{2}+m_{4}^{2}-2 E_{1, c m} E_{4, c m}-2\left|p_{1, c m}\right|\left|p_{4, c m}\right| z_{s} \\
& 2 \pi \delta\left(E_{f}-E_{i}\right) i T=\langle c, d|(S-1)|a, b\rangle \\
& \text { Dimensions } \quad\left\langle p^{\prime}, \beta \mid p, \alpha\right\rangle=2 E(\mathbf{p}) \delta\left(\mathbf{p}_{f}-\mathbf{p}_{i}\right) \delta_{\alpha, \beta} \\
& T=(2 \pi)^{3} \delta\left(\mathbf{p}_{f}-\mathbf{p}_{i}\right) A(s, t, u) \\
& \text { r.h.s has dim }=-4
\end{aligned}
$$

$A(s, t, u)$ is a scalar function of mass dimension $=0$

How many independent variables describe

- Decay proces $A \rightarrow a+b+c$
- Three particle production $\mathrm{A}+\mathrm{B} \rightarrow \mathrm{a}+\mathrm{b}+\mathrm{c}$

We work in the c.m. frame $\quad \frac{\vec{S} \cdot \vec{p}}{|\vec{p}|}|p, \lambda\rangle=\lambda|p, \lambda\rangle$

$$
\left\langle p_{3}, \lambda_{3} ; p_{4}, \lambda_{4}\right| A\left|p_{1}, \lambda_{1} ; p_{2}, \lambda_{2}\right\rangle=A_{\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}}(s, t, u)
$$

Helicity states vs canonical spin states: $\quad S_{z}|p, m\rangle_{z}=m|p, m\rangle_{z}$

$$
\begin{aligned}
& |p, m\rangle_{z}=\Lambda(\vec{p} \leftarrow 0)|0, m\rangle_{z} \\
& |p, \lambda\rangle=R(\hat{p}) \Lambda(|\vec{p}| \hat{z} \leftarrow 0)|0, m\rangle_{z}
\end{aligned}
$$

Exercise show this: $|p, \lambda\rangle_{z}=\sum_{m=-S}^{S}|p, m\rangle_{z} D_{m, \lambda}^{S}(\hat{p})$

- Even though this looks non relativistic it is relativistic. Notion of LS amplitudes, LS vs. helicity relations are relativistic

$$
\eta=\text { naturally }
$$

Parity $\quad A_{\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}}(s, t, u)=\eta A_{-\lambda_{1},-\lambda_{2},-\lambda_{3},-\lambda_{4}}(s, t, u)$

How many independent scalar functions describe

$$
\begin{aligned}
& \mathrm{J} / \psi \rightarrow \pi^{+} \pi^{-} \pi^{0} \\
& \gamma \mathrm{p}->\pi^{0} \mathrm{p}
\end{aligned}
$$

For particles with spin $\quad A_{\lambda_{i}}(s, t)=16 \pi \sum_{J=-M}^{M}(2 J+1) f_{\lambda_{i}}^{J}(s) d_{\lambda, \lambda^{\prime}}^{J}(\theta)$

$$
\lambda^{\prime}=\lambda_{3}-\lambda_{4} \quad \lambda=\lambda_{1}-\lambda_{2}
$$

$$
f_{\lambda_{i}}^{J}(s)=\frac{1}{32 \pi} \int_{-1}^{1} d z_{s} A_{\lambda_{i}}(s, t(s, \theta)) d_{\lambda, \lambda^{\prime}}^{J}(\theta)
$$

- Wigner d-functions lead to kinematical singularities
- Threshold (barrier factors) originate from kinematical factors in relation between t and $\cos (\theta)$ (through dependence of A_{λ} on t)
- Unequal masses give lead to "daughter poles"
- Dynamical singularities : from dynamical (unitary cuts) in $\mathrm{A}(\mathrm{s}, \mathrm{t})$.

Crossing symmetry
$\bar{p}_{i}=-p_{i}=\left(-\vec{p}_{i},-E_{i}\right)$

$$
\mathrm{a}\left(\mathrm{p}_{1}\right)+\overline{\mathrm{c}}\left(\overline{\mathrm{p}}_{3}\right) \rightarrow \overline{\mathrm{b}}\left(\overline{\mathrm{p}}_{2}\right)+\mathrm{d}\left(\mathrm{p}_{4}\right)
$$

$a\left(p_{1}\right)+b\left(p_{2}\right) \rightarrow c\left(p_{3}\right)+d\left(p_{4}\right)$

$$
\mathrm{a}\left(\mathrm{p}_{1}\right)+\overline{\mathrm{d}}\left(\overline{\mathrm{p}}_{4}\right) \rightarrow \mathrm{c}\left(\mathrm{p}_{3}\right)+\overline{\mathrm{b}}\left(\overline{\mathrm{p}}_{2}\right)
$$

$\mathrm{E}_{\mathrm{c} . \mathrm{m}} \quad s=\left(p_{1}+p_{2}\right)^{2} \quad t=\left(p_{1}+p_{\overline{3}}\right)^{2} \quad u=\left(p_{1}+p_{\overline{4}}\right)^{2}$
$\operatorname{Cos}(\theta) \quad t=\left(p_{1}-p_{3}\right)^{2} \quad s=\left(p_{1}-p_{\overline{2}}\right)^{2} \quad t=\left(p_{1}-p_{3}\right)^{2}$
$\operatorname{Cos}(\theta) \quad u=\left(p_{1}-p_{4}\right)^{2} \quad u=\left(p_{1}-p_{4}\right)^{2} \quad s=\left(p_{1}-p_{\overline{2}}\right)^{2}$

$$
A_{\lambda_{1}, \cdots}^{(s)}(s+i \epsilon, t, u) \rightarrow \sum_{\lambda_{1}^{\prime}, \cdots}\left[D_{\lambda_{1}, \lambda_{1}^{\prime}}^{S_{1}} \cdots\right] A_{\lambda_{1}^{\prime}, \ldots}^{(t)}(s, t+i \epsilon, u) \rightarrow \cdots
$$

- The i ε is important. Function values at, e.g. $\mathrm{s}+\mathrm{i} \varepsilon$ vs $\mathrm{s}-\mathrm{i} \varepsilon$ are different !

Crossing Symmetry : Decays

$a\left(p_{1}\right)+b\left(p_{2}\right) \rightarrow c\left(p_{3}\right)+d\left(p_{4}\right)$

$$
A(s, t, u) \rightarrow A\left(M_{1}^{2}+i \epsilon, s+i \epsilon, t+i \epsilon, u+i \epsilon\right)
$$

- In decay kinematics, the decaying mass becomes a dynamical variable, (iع important)
- Crossing from one kinematical region (e.g. s-channel) to another (e.g. t-channel) requires taking the corresponding variables off the real axis and to the complex plane : analytical continuation.

Analyticity

Feynman diagrams

$$
\begin{aligned}
& A\left(p_{1}, \cdots\right) \propto \int\left[\Pi_{j} d^{4} k_{j}\right] \frac{\text { polynomial in } \mathrm{k}_{j}}{\left(m_{q}^{2}-\left(p_{i}-k_{j}\right)^{2}-i \epsilon\right)\left(\left(k_{i}-k_{j}\right)^{2}-i \epsilon\right) \cdots} \\
& m^{2}-p^{2}=\left[m^{2}+\mathbf{p}^{2}\right]-\left(p^{0}\right)^{2} \\
& m^{2}-p^{2}=0 \rightarrow p^{0}= \pm\left(m^{2}+\mathbf{p}^{2}\right)^{1 / 2} \\
& \text { - Integrand becomes singular when } \\
& \text { intermediate states go on shell. } \\
& \text { - Thresholds for producing physical } \\
& \text { intermediate are the only reason why } \\
& \text { amplitudes are singular. } \\
& \text { - Production of intermediate states is related to } \\
& \text { unitarity. Thus we expect unitarity to } \\
& \text { determine singularities of the amplitudes. }
\end{aligned}
$$

On the role of is

$$
\operatorname{Im}\left[\frac{1}{\sqrt{m^{2}+\mathbf{p}^{2}} \mp i \epsilon-p^{0}}\right]= \pm \pi \delta\left(p_{0}-\sqrt{m^{2}+\mathbf{p}^{2}}\right)
$$

Analyticity and Causality

Dispersion relations

causality: receiver receives at $\mathrm{t}>0$ and not at $\mathrm{t}<0$
source emits a signal at $\mathrm{t}=0$

0
amplitude of the signal

$$
f(t) \propto \theta(t)
$$

consider the Fourier transform ($\mathrm{E} \rightarrow$ energy)

$$
f(E) \equiv \int d t e^{i E t} f(t)
$$

and extend definition to complex plane $\mathrm{E} \rightarrow \mathrm{z}$, then
$f(z)$ is holomorphic for $\operatorname{Im} E>0$

Causality: The outgoing wave cannot appear before the incoming one. Causality determines analytical properties of the scattering amplitude as function on energy/ momenta/scattering angle. The specific from of these conditions depend on the type of interactions and kinematics (e.g. relativistic vs non relativistic)

$$
f^{*}(k)=f\left(-k^{*}\right) \quad f^{*}(E)=f\left(E^{*}\right)
$$

The function is analytical in the whole E-plane not only the upper half

How unitarity constrains singularities

- Unitarity "operates" in the physical domain, i.e. s real and above threshold and $|\operatorname{Cos}(\theta)|<1$. This domain is the boundary of the complex plane where analytical amplitude are defined

$$
A(s+i \epsilon)=A_{\text {physical }}(s=\text { real and above threshold })
$$

$$
\text { sign fixed by "arrow of time } \mathrm{V}(\mathrm{t})=\mathrm{V} \exp (-\mathrm{t}|\varepsilon|)
$$

- The difference (discontinuity) $\mathrm{A}(\mathrm{s}+\mathrm{i} \varepsilon)-\mathrm{A}(\mathrm{s}-\mathrm{i} \varepsilon) \neq 0$ (cf. Feynman diagrams), comes from particle production this we expect it being determined by unitarity.

$$
2 I m T_{f t}=\sum_{n} 2 \pi \delta\left(E_{i}-E_{n}\right) T_{f n}^{*} T_{n i}
$$

- Cauchy theorem : singularities determine the amplitude !!!
- In potential scattering partial wave amplitudes, in the energy plane, have branch points on the real axis and cuts. They are analytical everywhere else
- Resonances correspond to poles on the unphysical sheet of partial waves
- Some resonance are bound states. These are poles on the real axis on the physical sheet
- Opening of cuts is due to unitarity. This makes sense. When bound states become resonances they need to decay, a process "controlled" by conservation of probability. They need to move away from the physical sheet and unitarity give the option to exist by "opening" a cut so that they can dive to an unphysical sheet
- The same happens in relativistic theory. The extra complication is existence of "left hand cuts" from crossing symmetry.
- The number of invariant amplitude and variables are constrained by Lorentz symmetry + parity.

