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Lecture Plan !1

Lecture 1: Hadrons as laboratory for QCD:  

• Introduction to QCD  

• Bare vs effective effective quarks and gluons 

• Phenomenology of Hadrons  

 Lecture 2: Complex analysis  

Lecture 3: Phenomenology of hadron reactions  

•  Kinematics and observables  

Lecture 4: How to extract resonance information from the data  

• Partial waves and resonances 

• Properties of reaction amplitudes  

• Space time picture of Parton interactions and Regge phenomena 

• Higher states and duality 
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Relativistic S-matrix fundamentals !2

Causality: Determines domain of analyticity of reaction 
amplitudes as function of kinematical variables.  

Unitarity: Determines singularities. 

Crossing: Dynamical relation, aka reaction amplitudes in 
the exchange channel (forces) are analogous to amplitude 
in the direct channel (resonance) 
These principles constrain the amplitude on the physical sheet. But on the 
unphysical sheet, there poles and other singularities, i.e. triangle singularity 
brains points, that arise from the underlying dynamics. Thus in reality it is the 
unphysical sheet which is of interest.   

Amplitude analysis = make hypothesis about these singularities and use 
analytical continuation to obtain the amplitude on the physical sheet where you 
fit to data.
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S-matrix properties (in relativistic theory) !3

X

f

Pfi = 1

2ImTft =
X

n

2⇡�(Ei � En)T
⇤
fnTni

• Related to transition probability

• Conservation of Probability = Unitarity
Pfi = |hf |S|ii|2 = hi|S†|fihf |S|ii

S†S = I
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How unitarity constrains singularities: simple example !4

2ImTft =
X

n

2⇡�(Ei � En)T
⇤
fnTni
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A(s, t) = 16⇡
1X

l=0

(2l + 1)fl(s)Pl(cos ✓) Imfl(s) = ⇢(s)|fl(s)|2

Consider elastic scattering of spineless particles 

⇢(s) = 2kcm(s)/
p
s

At fixed s, this is a complicated, integral relation w.r.t momentum transfer, t 
It is simplified (diagonalized) by expanding A(s,t) in partial waves 
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How unitarity constrains singularities !5

fl(s) =
1

32⇡

Z 1

�1
d cos ✓Pl(cos ✓)A(s, t(s, cos ✓))

→ Reflection theorem (Calculus 101):  fl(s*) = fl(s*) 

Properties of the partial wave, fl(s)  (for fixed l as function of s): 

• fl(s) is real for s below threshold 
• Im fl(s) is finite above threshold.  
• fl(s) is analytical (since A(s,t) is)

fl(s+iε)

fl(s-iε)

Threshold 
s=(m1+m2)2

1

2i
[fl(s+ i✏)� fl(s� i✏)] = ⇢(s)fl(s+ i✏)fl(s� i✏)

for simplicity ignore singularities in t 

Lets  look for a function, fII(s) that, for s-iε is  
equal to  fI(s+iε). Theorem of analytical  
continuation implies there is only one such  
function 
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Second sheet !6

f(s+ i✏) =
f(s� i✏)

1� 2i⇢(s)f(s� i✏)

fII(s) =
f(s)

1� 2i⇢(s)f(s)

fII(s� i✏) = f(s+ i✏)

f(s) =
1

2i⇢(s)

Singularity = Resonance  at complex s when 

Define for Im s < 0 

This is analytical continuation of f(s) 
below the real axis  



INDIANA UNIVERSITY

Breit-Wigner !7

f (s) =
g2 str − s

m2 − s + g2 str − s

ρ(s) = s − str

fII(s) =
f (s)

1 − 2iρ(s)f (s)
=

g2 str − s

m2 − s + g2 str − s − 2ig2 s − str

when Im s < 0 

=
g2 str − s

m2 − s − ig2 s − str

|BW |2

Res

Ims

when Im s < 0 

m2 − s + ig2 s − str
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Phenomenology of hadron interaction !8

�a+b!a+b /
Z

dt

s2
|A(s, t)|2

�a+b!X / ImA(s, 0)

s
from unitarity 

• Evidence for resonance scattering : connection to QCD bound states.  

• Kinematical range for resonance scattering. 

• Features of high energy scattering : physics of cross channels  

• Space-time interpretation of high and low energy scattering  

• Dual models 
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Phenomenology of hadron interaction !9

�a+b!a+b /
Z

dt

s2
|A(s, t)|2

�a+b!X / ImA(s, 0)

s
from unitarity 

Resonance 
 scattering 

A(s, t) ∼
1

m2
r − s
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Resonance Scattering : look at angular distribution !10

d�

dt
/ |A(s, t)|2

s2

from M.Ostrick

Angular distribution: a few “wiggles” 

more pronounced forward/backward peaks as energy increases

A(s, t) =
X

l

(2l + 1)fl(s)Pl(zs(t))
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Resonance scattering !11

A(s, t) =
X

l

(2l + 1)fl(s)Pl(zs(t)) A(s, t) ⇠ PlR(zs(t))

s� sR

• Due to confinement, we expect an infinite number of resonances (poles at 
positive energy — recall the potential shell example) of arbitrary large mass and 
spin.  

• String/flux tube breaking leads to screening of color charge and these poles 
decay. As mass increases they coach to multi-particle final states. The poles are 
still there, but dive deeper into to complex plane and are more difficult to 
identify. However, when making a model it makes more sense to parametrize  
amplitude with BW resonances as compared to some arbitrary background 
functions.  

• For lmax  ~ 5 and interaction range r0 ~0.5fm this gives plab  <~ 10/fm ~ 2GeV,   
[or W ~ (2 Plab mp )1/2  ~ 2GeV ] 

• For resonance scattering  

→

p = l /r
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Scattering at High energies !12

d�

dt
(s) =

1

s2
|A(s, t)|2

�a+b!X =
1

s
ImAab!ab(s, 0)

Smooth behavior  
constant or power 
low fall off Smooth fall of with t and 

forward/backward 
peking 

“point like” 

“extended like” 
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Scattering at high energies !13

• s-dependence:  
•many intermediate particles can be produced, unitarity  becomes 
complicated and less useful.  

• t-dependence:  
•high partial waves become important,  several Legendre functions are 
needed.  

• There is universality in both s and t-dependencies: smooth (constant or falling 
s-dependence), and forward/(backward) peaking in t.  The universality hints 
into importance of t/(u) channel singularities. 
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From t-channel to s-channel  (high energy forward scattering) !14

t

s u

s=4m2

t=4m2

u=4m2

a+b->c+d 
s-channel

a+c->b+d 
t-channel

- -

a+d->c+b 
u-channel

- -

As s increase and t is fixed the 
t-channel resonances (or 
singularities)  stay close relative 
to s and u channel resonances 

To obtain the amplitude in this 
limit need to add all t-channel 
resonances 

s increases

t is 
fixed 
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From u-channel to s-channel (high energy backward scattering) !15

t

s u

s=4m2

t=4m2

u=4m2

a+b->c+d 
s-channel

a+c->b+d 
t-channel

- -

a+d->c+b 
u-channel

- -

s increases

u is fixed 

As s increase and u is fixed the 
u-channel resonances (or 
singularities)  stay close relative 
to s and t channel resonances
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analytical continuation from s to t !16

Sum of a large 
number of 
particle 
productions at 
high-s looks like 
an exchange of 
various 
resonances in 
the t-channel. 

Use t-channel 
partial waves 
and analytically 
continue to 
large-s
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!17

converges if |cosθ|<1 : (e.g. 1+x+x2+... = finite for |x|<1)

A(s, t) =
X

l

(2l + 1)fl(s)Pl(cos �)

b

“t-channel”A(s, t) =
X

l

(2l + 1)fl(t)Pl(zt)

s = � t� 4m2

2
(1� zt)

(e.g. what is the value of 1+x+x2+... when x>1 ?
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!17

converges if |cosθ|<1 : (e.g. 1+x+x2+... = finite for |x|<1)

A(s, t) =
X

l

(2l + 1)fl(s)Pl(cos �)

s

t

z = cos �

z = 1 +
2t

s� 4m2

“s-channel”

t = � (1� z)

2
(s� 4m2) < 0 for |z| < 1 and s > 4m2

b

“t-channel”A(s, t) =
X

l

(2l + 1)fl(t)Pl(zt)

s = � t� 4m2

2
(1� zt)

(e.g. what is the value of 1+x+x2+... when x>1 ?
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!17

converges if |cosθ|<1 : (e.g. 1+x+x2+... = finite for |x|<1)

A(s, t) =
X

l

(2l + 1)fl(s)Pl(cos �)

s

t

z = cos �

z = 1 +
2t

s� 4m2

“s-channel”

t = � (1� z)

2
(s� 4m2) < 0 for |z| < 1 and s > 4m2

b

t = � (1� z)

2
(s� 4m2) > 4m2 for |z| > 1 and s < 0

t
s

s

t

z = cos �
a

b

c

d
s

t

c

a

d

b

c-

a

d

b
-

a+b -> c+d

“t-channel”A(s, t) =
X

l

(2l + 1)fl(t)Pl(zt)

s = � t� 4m2

2
(1� zt)

(e.g. what is the value of 1+x+x2+... when x>1 ?
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Example of analytical continuation !18

1

l � �
=

Z 1

0
dxe�x(l��)

J(z) =

Z 1

0
dx


ex�

1 + ze�x

�
= z�

Z z

0

dy

y�+1(1 + y)
to obtain y = ze�x

For example, assume i.e. it has a pole (resonance) where α(t)=l

z ! 1

for large z =z(s) ~ s

J(z) = � z�⇥

sin⇥�
+ z�

Z 1

z

dy

y�+1(1 + y)
! � z�⇥

sin⇥�

provides analytical continuation for α>0

A(s, t) =
X

l

(2l + 1)fl(t)Pl(zt)

The series converges for |zt|<1 (cosine of scattering angle in the t-channel), i.e. in the t-channel 
physical region. We want to know A(s,t) for in the s-channel physical region, in particular for  
large s, with corresponds to |zt| >> 1.  

s = � t� 4m2

2
(1� zt)

fl(t) =
1

l � ↵(t)

for α<0 and |zt| < 1 use  A(s, t) ⇠ J(zt) =
X

l

zlt
l � ↵(t)

this is analog of 
f (x) = 1 + x + x2 + ⋯

f (x) =
1

1 − x
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Reggeon !19

s-channel partial wave expansion 

t-channel partial wave expansion 

A(s, t) = ∑
l

(2l + 1)f (s)
l (s)Pl(cos θs)

A(s, t) = ∑
l

(2l + 1)f (t)
l (t)Pl(cos θt)

The amplitude at large-s (in the s-channel physical region) is dominated by a 
selected, infinite set of t-channel partial waves (t-channel resonances).  

This sum is referred to as a Reggeon or a Regge exchange.  

Since Reggeon is a collection of partial waves and partial waves have 
quantum numbers of resonances, so do Reggeon. They are like special kind 
of virtual particles. For example in perturbation theory pion we can talk about 
virtual, single pion exchange. A collection of all pion like exchange becomes 
a Reggion with pion quantum numbers. “Reggized pion” 

π π
Reggized
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Pomeron vs Reggeons !20

s-channel: multi-particle production t-channel: collection of resonances: “Regge” exchanges 

�p� X

Exchange of t-channel partial wave with quantum numbers of the 
vacuum is called the Pomeron 

 (exchange of non-vacuum q.n. falls with energy)

  

�tot � s� = s0.08

�el ⇠
1

b
s2�(0)�2

A(s, t ⇠ 0) ⇠ is�(0) ⇠ s�tot
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Pomeron vs Reggeons !20

s-channel: multi-particle production t-channel: collection of resonances: “Regge” exchanges 

fl(t) =
r(t)

l � �(t)
<--A(s, t) / r(t)s�(t)

�p� X

Exchange of t-channel partial wave with quantum numbers of the 
vacuum is called the Pomeron 

 (exchange of non-vacuum q.n. falls with energy)

  

�tot � s� = s0.08

�el ⇠
1

b
s2�(0)�2

A(s, t ⇠ 0) ⇠ is�(0) ⇠ s�tot
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Growing Radius, partons, saturation,… !21

Where does to parton 
model come from 
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Growing Radius, partons, saturation,… !21

Where does to parton 
model come from 

  

adding correlated partons is  
beneficial (expansion not in g2 but in  g2 log s )
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Growing Radius, partons, saturation,… !21

Where does to parton 
model come from 

  

(slow moving hadron,vacuum,etc) 

g2

s

X

n

�n�1(t)

(n� 1)!
logn�1 s ! s�(�k2

?)

�(t) = �1 + ⇥(t)

(fast moving, hadron, parton,etc) 

adding correlated partons is  
beneficial (expansion not in g2 but in  g2 log s )
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Growing Radius, partons, saturation,… !21

Where does to parton 
model come from 

  

A(s, r?) ⇠
Z

d2k?e
ik?r?e�(�k2

?) log s ⇠ 1

log(s)
e�r2?/ log(s)

... and  in space-time assuming Pomeron α(0)=1

hadron swells

(slow moving hadron,vacuum,etc) 

g2

s

X

n

�n�1(t)

(n� 1)!
logn�1 s ! s�(�k2

?)

�(t) = �1 + ⇥(t)

(fast moving, hadron, parton,etc) 

adding correlated partons is  
beneficial (expansion not in g2 but in  g2 log s )



INDIANA UNIVERSITY

Growing Radius, partons, saturation,… !21

pz ! 1

p = 0

(1� x)pz

interaction when 
commensurate 

momenta 

Where does to parton 
model come from 

  

A(s, r?) ⇠
Z

d2k?e
ik?r?e�(�k2

?) log s ⇠ 1

log(s)
e�r2?/ log(s)

... and  in space-time assuming Pomeron α(0)=1

hadron swells

(slow moving hadron,vacuum,etc) 

g2

s

X

n

�n�1(t)

(n� 1)!
logn�1 s ! s�(�k2

?)

�(t) = �1 + ⇥(t)

(fast moving, hadron, parton,etc) 

adding correlated partons is  
beneficial (expansion not in g2 but in  g2 log s )
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Growing Radius, partons, saturation,… !21

long lived fluctuations finite <x> 
�E ⇠ µ2

?
x(1� x)pz   

pz ! 1

p = 0

(1� x)pz

interaction when 
commensurate 

momenta 

Where does to parton 
model come from 

  

A(s, r?) ⇠
Z

d2k?e
ik?r?e�(�k2

?) log s ⇠ 1

log(s)
e�r2?/ log(s)

... and  in space-time assuming Pomeron α(0)=1

hadron swells

(slow moving hadron,vacuum,etc) 

g2

s

X

n

�n�1(t)

(n� 1)!
logn�1 s ! s�(�k2

?)

�(t) = �1 + ⇥(t)

(fast moving, hadron, parton,etc) 

adding correlated partons is  
beneficial (expansion not in g2 but in  g2 log s )
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Growing Radius, partons, saturation,… !21

long lived fluctuations finite <x> 
�E ⇠ µ2

?
x(1� x)pz   

pz ! 1

p = 0

(1� x)pz

interaction when 
commensurate 

momenta 

hxihni = pz
µ

hni ⇠ log(s)

Where does to parton 
model come from 

  

A(s, r?) ⇠
Z

d2k?e
ik?r?e�(�k2

?) log s ⇠ 1

log(s)
e�r2?/ log(s)

... and  in space-time assuming Pomeron α(0)=1

hadron swells

(slow moving hadron,vacuum,etc) 

g2

s

X

n

�n�1(t)

(n� 1)!
logn�1 s ! s�(�k2

?)

�(t) = �1 + ⇥(t)

(fast moving, hadron, parton,etc) 

adding correlated partons is  
beneficial (expansion not in g2 but in  g2 log s )
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Growing Radius, partons, saturation,… !21

long lived fluctuations finite <x> 
�E ⇠ µ2

?
x(1� x)pz   

pz ! 1

p = 0

(1� x)pz

interaction when 
commensurate 

momenta 

hxihni = pz
µ

hni ⇠ log(s)

random walk in transverse space

hr?i ⇠
r

hni 1

µ?
⇠ log1/2(s)  

Where does to parton 
model come from 

  

A(s, r?) ⇠
Z

d2k?e
ik?r?e�(�k2

?) log s ⇠ 1

log(s)
e�r2?/ log(s)

... and  in space-time assuming Pomeron α(0)=1

hadron swells

(slow moving hadron,vacuum,etc) 

g2

s

X

n

�n�1(t)

(n� 1)!
logn�1 s ! s�(�k2

?)

�(t) = �1 + ⇥(t)

(fast moving, hadron, parton,etc) 

adding correlated partons is  
beneficial (expansion not in g2 but in  g2 log s )
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Growing Radius, partons, saturation,… !21

long lived fluctuations finite <x> 
�E ⇠ µ2

?
x(1� x)pz   

pz ! 1

p = 0

(1� x)pz

interaction when 
commensurate 

momenta 

hxihni = pz
µ

hni ⇠ log(s)

random walk in transverse space

hr?i ⇠
r

hni 1

µ?
⇠ log1/2(s)  

large-s behavior universal  
(Pomeron = vacuum pole,  

universal mid-rapidity)

  

Where does to parton 
model come from 

  

A(s, r?) ⇠
Z

d2k?e
ik?r?e�(�k2

?) log s ⇠ 1

log(s)
e�r2?/ log(s)

... and  in space-time assuming Pomeron α(0)=1

hadron swells

(slow moving hadron,vacuum,etc) 

g2

s

X

n

�n�1(t)

(n� 1)!
logn�1 s ! s�(�k2

?)

�(t) = �1 + ⇥(t)

(fast moving, hadron, parton,etc) 

adding correlated partons is  
beneficial (expansion not in g2 but in  g2 log s )
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Growing Radius, partons, saturation,… !21

long lived fluctuations finite <x> 
�E ⇠ µ2

?
x(1� x)pz   

pz ! 1

p = 0

(1� x)pz

interaction when 
commensurate 

momenta 

hxihni = pz
µ

hni ⇠ log(s)

random walk in transverse space

hr?i ⇠
r

hni 1

µ?
⇠ log1/2(s)  

large-s behavior universal  
(Pomeron = vacuum pole,  

universal mid-rapidity)

  

Where does to parton 
model come from 

  

A(s, r?) ⇠
Z

d2k?e
ik?r?e�(�k2

?) log s ⇠ 1

log(s)
e�r2?/ log(s)

... and  in space-time assuming Pomeron α(0)=1

hadron swells

(slow moving hadron,vacuum,etc) 

g2

s

X

n

�n�1(t)

(n� 1)!
logn�1 s ! s�(�k2

?)

�(t) = �1 + ⇥(t)

(fast moving, hadron, parton,etc) 

adding correlated partons is  
beneficial (expansion not in g2 but in  g2 log s )

it takes “a long time” to develop a low-x parton out of a fast one   



INDIANA UNIVERSITY

Comparing with Experiment !22

resonance 
region Ecm = 

s1/2 < 2.5 GeV

multi-particle 
production

total cross section 
slowly rises with s



INDIANA UNIVERSITY

Large Nc !23

g2NC = const .

Nc → ∞

An empty digram represents 
infinite number of  process that 
happen in a plane !  

The plane can be intercepted 
as a world sheet of a string/flux 
tube connecting the valance 
quarks  

Non planar diagrams are 
suppressed by 1/Nc 

To leading order in 1/Nc 
hadrons do not decay, that to 
not scatter.  
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!24

⟨M |H |M⟩ = O(1)

⟨M1 |H |M2M3⟩ = g = O(1/ NC)

∼
Γ

m2 − s − iΓ
Γ = O(1/Nc) = g2
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Dualities !25

u
s-

u
u
d

K-p

s

t

planar diagrams may be considered as either 
s-channel or t-channel 

Interpretation of what happens in 
s-channel is dual to what 

happens in the t-channel : 
Mesons require baryons and vice 

versa 

K-p has “normal 
mesons” in the t-

channel  
and “normal 

baryons” in the  s 
channel

Regge phenomena :  
sum of t-channel resonances 

determines large-s behavior of 
the s0channel and vice versa.  
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Does it work ? !26

ρ+a2 ρ-a2a2 ~ 1 + exp(i π α(t))

ρ ~ 1 - exp(i π α(t))

In K-p scattering 
imaginary parts of a2 

and rho add up 
In K+p they cancel ! 
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Does it work ? !26

a c

b d

a c

b d
ρ,a2

ρ+a2 ρ-a2a2 ~ 1 + exp(i π α(t))

ρ ~ 1 - exp(i π α(t))

In K-p scattering 
imaginary parts of a2 

and rho add up 
In K+p they cancel ! 
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Does it work ? !26

a c

b d

a c

b d

ρ+a2 ρ-a2a2 ~ 1 + exp(i π α(t))

ρ ~ 1 - exp(i π α(t))

In K-p scattering 
imaginary parts of a2 

and rho add up 
In K+p they cancel ! 
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Dolen Horn Schmit duality  !27

K(σπ+p-σπ-p)
2
-

ū(p1,�1)[A(s, t) + (k1 + k2)µ�
µB(s, t)]u(p2,�2)
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What about “exotic” hadrons !28

Standard argument for non-existence of  
multi quark sates: they can fall apart to 
ordinary mesons and  
baryons   

For example 2 quarks and 2 anti quarks  
can rearrange into 2 quark-antiquark 
pairs 

But confinement requires quarks are 
connected by flux tubes and it is 
possible that certain multi quark  
configurations are more favorable than 
“fall apart configurations” 

vs2 Mesons 2 di quarks = teraquark 

3 × 3̄ = 8 + 1

3̄ × 3̄ = 6 + 33 × 3̄ = 8 + 1

3 × 3 = 6 + 3̄
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Need to introduce strings !29

Talk by G.Rossi 
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Other states !30
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Muti-quark states can be related to ordinary states by duality !31

s-channel 
tetraquark  
are dual to t-
channel mesons  
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Muti-quark states can be related to ordinary states by duality !32

s-channel mesons  
are dual to t-
channel tetra 
quarks

tetra quarks 
should form 
Regge trajectories 
just like mesons
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∞ number of poles : confinement  
f(s) =

1

K�1(s)� i�(s)

K(s) =
1X

r=1

g2r
m2

r � s
!

X

r

1

r2 � s
⇠ cos(⇡

p
s)

sin(⇡
p
s)

Quadratically spaced radial trajectories 

Linearly spaced radial trajectories (Veneziano) 

K(s) ⇠ �(a�s)
�(b�s)

A(s, t) =
Γ(1 − α(s))Γ(1 − α(t))

Γ(2 − α(s) − α(t))

Veneziano amplitude : crossing symmetric: 

α(s) = a + bs

Veneziano Model 
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Other effects of partial wave analyticity !35

Al(s) =

Z
dzsA(s, t(s, zs), u(s, zs))Pl(cos ✓)

Scalar particle scattering 1+2 -> 3 + 4 

/ (m2
e � t(s, zs))

�1 t = � (s� 4m2)

2
(1� zs)

A0(s) ⇠
Z 1

�1
dzs

1

m2
e +

(s�4m2)
2 (1� zs)

Partial waves have “right hand” singularity (from s) and “left hand” (from t and u) 
For example assume equal masses

For s>4m2 integral is finite
For s<4m2 - me2 the detonator crosses 0 within integration limi, implying 
A0(s) has a cut for negative s 

Scalar amplitudes have simple singularity structure, but partial waves a much more 
complicated. They also have kinematical singularities when spin and/or unequal masses 
are involved 
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Bound states and Virtual States !36

bound state : pole on the 
physical energy plane 

II(-)

• f0(980),  
• a0(980), 
• a1(1420), 
• Lambda(1405),  
• XYZ,  
• …3S

1S

V(r)

r

3S

1S

Deuteron the np molecule 
bound by meson exchange 

forces 

virtual state : pole on “unphysical 
sheet” closest the physical region 

thresholds “cut”  
the physical energy plane 

• Thresholds are “windows” to 
singularities (particles, visual 
states, forces” ) located on the 
nearby unphysical sheet. 

• They appear  as cusps (if below 
threshold) or bumps  (is above) Threshold
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Amplitude singularities 

Al(s) =
1

2

Z 1

�1
dzsA(s, t(s, z), u(s, z))

Partial waves inherit singularities of cross-

A(s,t,u)

M-decay

t sM

s-
channel 

t
s

M

Crossing

t/u channel singularities 

s channel singularities

• However, X-sections are given by A(s,t,u) and not by partial waves. In general 
“bumps” in partial waves are “washed out” and require partial wave analysis. 

• A(s,t,u) has simple singularity structure. Its connection 
to particles arises through (complicated) partial waves

• Singularities of partial waves are 
complicated but have a more direct 
physical interpretation



3S

1S

V(r)

r

3S

1S

Threshold
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 Well known examples of cusps

3S1 (deuteron) bound 
state : pole on the 

physical energy plane 

II(-)

Deuteron:  n-p molecule bound by 
meson exchange forces 

 1S1 virtual state : pole on “unphysical 
sheet” close the physical region 

Q0 ⇠ 100 MeV < 2m⇡ << 2mN

Wave function effect 
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Λ* mass

t-channel resonance can produce s-
channel “band” if:

μ(K)

m2 (p) 

λ (hyperon)

t
m1 (cc)

_

M (Λb)

all particles on-shell

m2 and m1 collinear

v(m2) > v(m1)

Coleman-Norton 

Classical picture 
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Example : Pc Kinematics 

s± = �m2
e + p22 + p23 +

(m2
e + p21 � p23)(m

2
e + p24 � p22)

2m2
e

± �1/2(m2
e, p

2
1, p

2
3)�

1//2(m2
e, p

2
2, p

2
4)

2m2
e

s+

s�

m2
e

Ims� > 0Ims� < 0

bl(s) =
1

2

Z 1

�1
dzs

Pl(zs)

m2
⇤ � t(s, z)

• Singularities of b(s) are at s=s±

Z

str

ds0⇢(s0)
b(s0)

s0 � s+ i✏

m1

m2

m3

m4 m1 : ⇤b m2 : K

m3 : 3.4 GeV

m4 : p

mc : 4.449 GeV

m3 + m1 threshold
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Summary Lecture 4 !42

• In QCD light quark resonances appear clearly up to ~2GeV But one expected there to be 
an infinite number of them. 

• At higher masses they are harder to find. To help discriminating between various 
hypotheses one should “consult” with expectations from quark model and  duality 
arguments. 

• Duality arguments are consistent with existence of multi quark hadrons. 

• Veneziano  model and generalizations could be used to implement these ideas in data 
analysis.  

• Unlike non-relativistic theory, besides resonance poles one should work about “left-hand 
cuts’ (cusps), however, so far there is no unambiguous evidence for them in the data.  

Thank you for your attention !


