Lecture Plan

Lecture 1: Hadrons as laboratory for QCD:

- Introduction to QCD
- Bare vs effective effective quarks and gluons
- Phenomenology of Hadrons

Lecture 2: Complex analysis

Lecture 3: Phenomenology of hadron reactions

- Kinematics and observables

Lecture 4: How to extract resonance information from the data

- Partial waves and resonances
- Properties of reaction amplitudes
- Space time picture of Parton interactions and Regge phenomena
- Higher states and duality

Causality: Determines domain of analyticity of reaction amplitudes as function of kinematical variables.

Unitarity: Determines singularities.
Crossing: Dynamical relation, aka reaction amplitudes in the exchange channel (forces) are analogous to amplitude in the direct channel (resonance)
These principles constrain the amplitude on the physical sheet. But on the unphysical sheet, there poles and other singularities, i.e. triangle singularity brains points, that arise from the underlying dynamics. Thus in reality it is the unphysical sheet which is of interest.

Amplitude analysis = make hypothesis about these singularities and use analytical continuation to obtain the amplitude on the physical sheet where you fit to data.

- Related to transition probability

$$
\left.P_{f i}=|\langle f| S| i\right\rangle\left.\right|^{2}=\langle i| S^{\dagger}|f\rangle\langle f| S|i\rangle
$$

- Conservation of Probability = Unitarity

$$
\sum_{s, 1}^{p_{t}^{\prime \prime}=1}=1
$$

$$
2 \operatorname{Im} T_{f t}=\sum_{n} 2 \pi \delta\left(E_{i}-E_{n}\right) T_{f n}^{*} T_{n i}
$$

$$
2 \operatorname{Im} T_{f t}=\sum_{n} 2 \pi \delta\left(E_{i}-E_{n}\right) T_{f n}^{*} T_{n i}
$$

Consider elastic scattering of spineless particles

$$
\begin{array}{r}
\operatorname{Im} A(s, t)=\frac{\rho(s)}{16 \pi} \int \frac{d \Omega}{4 \pi} A\left(s, \cos \theta_{1}\right) A^{*}\left(s, \cos \theta_{2}\right) \\
\rho(s)=2 k_{c m}(s) / \sqrt{s}
\end{array}
$$

At fixed s, this is a complicated, integral relation w.r.t momentum transfer, t It is simplified (diagonalized) by expanding $\mathrm{A}(\mathrm{s}, \mathrm{t})$ in partial waves

$$
A(s, t)=16 \pi \sum_{l=0}^{\infty}(2 l+1) f_{l}(s) P_{l}(\cos \theta) \quad \operatorname{Im} f_{l}(s)=\rho(s)\left|f_{l}(s)\right|^{2}
$$

Properties of the partial wave, $\mathrm{f}_{\mathrm{i}}(\mathrm{s})$ (for fixed I as function of s):

- $f_{i}(s)$ is real for s below threshold
- Im $f_{l}(s)$ is finite above threshold.
- $f_{i}(s)$ is analytical (since $A(s, t)$ is)

$$
f_{l}(s)=\frac{1}{32 \pi} \int_{-1}^{1} d \cos \theta P_{l}(\cos \theta) A(s, t(s, \cos \theta))
$$

for simplicity ignore singularities in t
\rightarrow Reflection theorem (Calculus 101): $f_{i}\left(s^{*}\right)=f_{i}\left(s^{*}\right)$

$$
\frac{1}{2 i}\left[f_{l}(s+i \epsilon)-f_{l}(s-i \epsilon)\right]=\rho(s) f_{l}(s+i \epsilon) f_{l}(s-i \epsilon)
$$

Lets look for a function, $f_{\| I}(s)$ that, for s-i ε is equal to $f_{1}(s+i \varepsilon)$. Theorem of analytical continuation implies there is only one such function

Second sheet

$$
f(s+i \epsilon)=\frac{f(s-i \epsilon)}{1-2 i \rho(s) f(s-i \epsilon)}
$$

$$
\text { Singularity }=\text { Resonance at complex } s \text { when }
$$

Define for $\operatorname{Im} \mathrm{s}<0 \quad f_{I I}(s)=\frac{f(s)}{1-2 i \rho(s) f(s)}$

$$
f_{I I}(s-i \epsilon)=f(s+i \epsilon)
$$

This is analytical continuation of $f(s)$ below the real axis

$$
f(s)=\frac{1}{2 i \rho(s)}
$$

III indiana unversity Jefferson Lab

Breit-Wigner

$$
\begin{gathered}
f(s)=\frac{g^{2} \sqrt{s_{t r}-s}}{m^{2}-s+g^{2} \sqrt{s_{t r}-s}} \quad \text { when Im } \mathrm{s}<0 \\
m^{2}-s+i g^{2} \sqrt{s-s_{t r}} \\
\rho(s)=\sqrt{s-s_{t r}} \\
f_{I I}(s)=\frac{f(s)}{1-2 i \rho(s) f(s)} \quad=\frac{g^{2} \sqrt{s_{t r}-s}}{m^{2}-s+g^{2} \sqrt{s_{t r}-s}-2 i g^{2} \sqrt{s-s_{t r}}}
\end{gathered}
$$

when Im s < 0

$$
=\frac{g^{2} \sqrt{s_{t r}-s}}{m^{2}-s-i g^{2} \sqrt{s-s_{t r}}}
$$

- Evidence for resonance scattering : connection to QCD bound states.
- Kinematical range for resonance scattering.
- Features of high energy scattering : physics of cross channels
- Space-time interpretation of high and low energy scattering
- Dual models

$$
\begin{aligned}
& \sigma_{a+b \rightarrow a+b} \propto \int \frac{d t}{s^{2}}|A(s, t)|^{2} \\
& \sigma_{a+b \rightarrow X} \propto \frac{\operatorname{Im} A(s, 0)}{s} \quad \text { from unitarity }
\end{aligned}
$$

$$
\begin{aligned}
& \sigma_{a+b \rightarrow a+b} \propto \int \frac{d t}{s^{2}}|A(s, t)|^{2} \\
& \sigma_{a+b \rightarrow X} \propto \frac{\operatorname{Im} A(s, 0)}{s} \text { from unitarity }
\end{aligned}
$$

Resonance scattering

II indiana university Jefferson Lab
$\frac{d \sigma}{d t} \propto \frac{|A(s, t)|^{2}}{s^{2}}$
Angular distribution: a few "wiggles"

more pronounced forward/backward peaks as energy increases

- Due to confinement, we expect an infinite number of resonances (poles at positive energy - recall the potential shell example) of arbitrary large mass and spin.
- String/flux tube breaking leads to screening of color charge and these poles decay. As mass increases they coach to multi-particle final states. The poles are still there, but dive deeper into to complex plane and are more difficult to identify. However, when making a model it makes more sense to parametrize amplitude with BW resonances as compared to some arbitrary background functions.

$$
p=l / r
$$

- For $I_{\max } \sim 5$ and interaction range $\mathrm{r}_{0} \sim 0.5 \mathrm{fm}$ this gives $\mathrm{plab}<\sim 10 / \mathrm{fm} \sim 2 \mathrm{GeV}$, [or W ~ (2 P $\left.\mathrm{lab}_{\mathrm{lab}}\right)^{1 / 2} \sim 2 \mathrm{GeV}$]
- For resonance scattering

$$
A(s, t)=\sum_{l}(2 l+1) f_{l}(s) P_{l}\left(z_{s}(t)\right) \quad \rightarrow \quad A(s, t) \sim \frac{P_{l_{R}}\left(z_{s}(t)\right)}{s-s_{R}}
$$

- s-dependence:
-many intermediate particles can be produced, unitarity becomes complicated and less useful.
- t-dependence:
-high partial waves become important, several Legendre functions are needed.
- There is universality in both s and t-dependencies: smooth (constant or falling s-dependence), and forward/(backward) peaking in t. The universality hints into importance of $t /(u)$ channel singularities.

As s increase and t is fixed the t-channel resonances (or singularities) stay close relative to s and u channel resonances

To obtain the amplitude in this limit need to add all t-channel resonances
$a+\bar{c}->\bar{b}+d$

凹

Sum of a large number of particle productions at high-s looks like an exchange of various resonances in the t-channel.

Use t-channel partial waves and analytically continue to larges
bour shute or vesounie

$$
A(s, t)=\sum_{l}(2 l+1) f_{l}(s) P_{l}(\cos \theta)
$$

converges if $|\cos \theta|<1:\left(e . g .1+x+x^{2}+\ldots=\right.$ finite for $\left.|x|<1\right)$

$$
s=-\frac{t-4 m^{2}}{2}\left(1-z_{t}\right)
$$

$$
A(s, t)=\sum_{l}(2 l+1) f_{l}(t) P_{l}\left(z_{t}\right) \quad \text { "t-channel" }
$$

(e.g. what is the value of $1+x+x^{2}+\ldots$ when $x>1$?

$$
A(s, t)=\sum_{l}(2 l+1) f_{l}(s) P_{l}(\cos \theta)
$$

converges if $|\cos \theta|<1:\left(\right.$ e.g. $1+x+x^{2}+\ldots=$ finite for $\left.|x|<1\right)$

$$
\begin{gathered}
z=1+\frac{2 t}{s-4 m^{2}} \\
t=-\frac{(1-z)}{2}\left(s-4 m^{2}\right)<0 \text { for }|z|<1 \text { and } s>4 m^{2} \\
\text { " } s \text {-channel" } \\
s=-\frac{t-4 m^{2}}{2}\left(1-z_{t}\right) \\
A(s, t)=\sum_{l}(2 l+1) f_{l}(t) P_{l}\left(z_{t}\right) \quad \text { " } \dagger \text {-channel" }
\end{gathered}
$$

(e.g. what is the value of $1+x+x^{2}+\ldots$ when $x>1$?

$$
A(s, t)=\sum_{l}(2 l+1) f_{l}(s) P_{l}(\cos \theta)
$$

converges if $|\cos \theta|<1:\left(e . g .1+x+x^{2}+\ldots=\right.$ finite for $\left.|x|<1\right)$

$$
\begin{gathered}
z=1+\frac{2 t}{s-4 m^{2}} \\
t=-\frac{(1-z)}{2}\left(s-4 m^{2}\right)<0 \text { for }|z|<1 \text { and } s>4 m^{2}
\end{gathered}
$$

"s-channel"

$$
s=-\frac{t-4 m^{2}}{2}\left(1-z_{t}\right)
$$

$$
\begin{gathered}
A(s, t)=\sum_{l}(2 l+1) f_{l}(t) P_{l}\left(z_{t}\right) \quad \text { "t-channel" } \\
t=-\frac{(1-z)}{2}\left(s-4 m^{2}\right)>4 m^{2} \text { for }|z|>1 \text { and } s<0
\end{gathered}
$$

$a+b$-> cod
(e.g. what is the value of $1+x+x^{2}+\ldots$ when $x>1$?

$$
A(s, t)=\sum_{l}(2 l+1) f_{l}(t) P_{l}\left(z_{t}\right) \quad s=-\frac{t-4 m^{2}}{2}\left(1-z_{t}\right)
$$

The series converges for $\left|z_{t}\right|<1$ (cosine of scattering angle in the t-channel), ie. in the t-channel physical region. We want to know $A(s, t)$ for in the s-channel physical region, in particular for large s , with corresponds to $\left|z_{t}\right| \gg 1$.
For example, assume $f_{l}(t)=\frac{1}{l-\alpha(t)}$ ie. it has a pole (resonance) where $\alpha(\mathrm{t})=1$
$A(s, t) \sim J\left(z_{t}\right)=\sum_{l} \frac{z_{t}^{l}}{l-\alpha(t)} \quad$ for $\mathbf{\alpha}<0$ and $\left|\mathrm{z}_{\mathrm{t}}\right|<1$ use $\quad \frac{1}{l-\alpha}=\int_{0}^{\infty} d x e^{-x(l-\alpha)}$
to obtain $J(z)=\int_{0}^{\infty} d x\left[\frac{e^{x \alpha}}{1+z e^{-x}}\right]=z^{\alpha} \int_{0}^{z} \frac{d y}{y^{\alpha+1}(1+y)} \quad y=z e^{-x}$
provides analytical continuation for $\alpha>0$ for large $z=z(s) \sim s$

$$
J(z)=-\frac{z^{\alpha} \pi}{\sin \pi \alpha}+z^{\alpha} \int_{z}^{\infty} \frac{d y}{y^{\alpha+1}(1+y)} \rightarrow-\frac{z^{\alpha} \pi}{\sin \pi \alpha} \quad z \rightarrow \infty
$$

this is analog of

$$
f(x)=1+x+x^{2}+\cdots
$$

$$
f(x)=\frac{1}{1-x}
$$

s-channel partial wave expansion $\quad A(s, t)=\sum_{l}(2 l+1) f_{l}^{(s)}(s) P_{l}\left(\cos \theta_{s}\right)$
t-channel partial wave expansion $\quad A(s, t)=\sum_{l}(2 l+1) f_{l}^{(t)}(t) P_{l}\left(\cos \theta_{t}\right)$
The amplitude at large-s (in the s-channel physical region) is dominated by a selected, infinite set of t-channel partial waves (t-channel resonances).

This sum is referred to as a Reggeon or a Regge exchange.
Since Reggeon is a collection of partial waves and partial waves have quantum numbers of resonances, so do Reggeon. They are like special kind of virtual particles. For example in perturbation theory pion we can talk about virtual, single pion exchange. A collection of all pion like exchange becomes a Reggion with pion quantum numbers. "Reggized pion"

Reggized
π
s-channel: multi-particle production
t-channel: collection of resonances: "Regge" exchanges

$$
A(s, t \sim 0) \sim i s^{\alpha(0)} \sim s \sigma_{t o t}
$$

* Exchange of t-channel partial wave with quantum numbers of the vacuum is called the Pomeron
(exchange of non-vacuum q.n. falls with energy)

IT indIANA UNIVERSITY Jefferson Lab
s-channel: multi-particle production
t-channel: collection of resonances: "Regge" exchanges

$$
A(s, t \sim 0) \sim i s^{\alpha(0)} \sim s \sigma_{t o t}
$$

* Exchange of t-channel partial wave with quantum numbers of the vacuum is called the Pomeron
(exchange of non-vacuum q.n. falls with energy)

Growing Radius, partons, saturation,...

* Where does to parton model come from

III indanauniversity Jِefferson Lab

Growing Radius, partons, saturation,...

* Where does to parton model come from
adding correlated partons is beneficial (expansion not in g^{2} but in $\mathrm{g}^{2} \log \mathrm{~s}$)

ЏI nolana unversiry Jefferson Lab

Growing Radius, partons, saturation,...

* Where does to parton model come from
adding correlated partons is beneficial (expansion not in g^{2} but in $\mathrm{g}^{2} \log \mathrm{~s}$)
(fast moving, hadron, parton, etc)

Growing Radius, partons, saturation,...

* Where does to parton model come from
(fast moving, hadron, parton,etc)
adding correlated partons is beneficial (expansion not in g^{2} but in $\mathrm{g}^{2} \log \mathrm{~s}$)

(slow moving hadron, vacuum, etc)
... and in space-time assuming Pomeron $\alpha(0)=1$
$A\left(s, r_{\perp}\right) \sim \int d^{2} k_{\perp} e^{i k_{\perp} r_{\perp}} e^{\alpha\left(-k_{\perp}^{2}\right) \log s} \sim \frac{1}{\log (s)} e^{-r_{\perp}^{2} / \log (s)} \quad$ hadron swells

Growing Radius, partons, saturation,...

* Where does to parton model come from
(fast moving, hadron, parton,etc)
adding correlated partons is beneficial (expansion not in g^{2} but in $\mathrm{g}^{2} \log \mathrm{~s}$)
$\frac{g^{2}}{s} \sum_{n} \frac{\beta^{n-1}(t)}{(n-1)!} \log ^{n-1} s \rightarrow s^{\alpha\left(-k_{\perp}^{2}\right)}$
\vdots
\vdots $\alpha(t)=-1+\beta(t)$
... and in space-time assuming Pomeron $\alpha(0)=1$
$A\left(s, r_{\perp}\right) \sim \int d^{2} k_{\perp} e^{i k_{\perp} r_{\perp}} e^{\alpha\left(-k_{\perp}^{2}\right) \log s} \sim \frac{1}{\log (s)} e^{-r_{\perp}^{2} / \log (s)} \quad$ hadron swells

Growing Radius, partons, saturation,...

* Where does to parton model come from
(fast moving, hadron, parton,etc)
adding correlated partons is beneficial (expansion not in g^{2} but in $\mathrm{g}^{2} \log \mathrm{~s}$)

$$
\frac{g^{2}}{s} \sum_{n} \frac{\beta^{n-1}(t)}{(n-1)!} \log ^{n-1} s \rightarrow s^{\alpha\left(-k_{\perp}^{2}\right)}
$$

(slow moving hadron, vacuum,etc)

$$
\alpha(t)=-1+\beta(t)
$$

... and in space-time assuming Pomeron $\alpha(0)=1$

$$
A\left(s, r_{\perp}\right) \sim \int d^{2} k_{\perp} e^{i k_{\perp} r_{\perp}} e^{\alpha\left(-k_{\perp}^{2}\right) \log s} \sim \frac{1}{\log (s)} e^{-r_{\perp}^{2} / \log (s)} \quad \text { hadron swells }
$$

$$
\Delta E \sim \frac{\mu_{\perp}^{2}}{x(1-x) p_{z}}
$$

* long lived fluctuations finite <x>

Growing Radius, partons, saturation,...

* Where does to parton model come from
(fast moving, hadron, parton,etc)
adding correlated partons is beneficial (expansion not in g^{2} but in $\mathrm{g}^{2} \log \mathrm{~s}$)

$$
\frac{g^{2}}{s} \sum_{n} \frac{\beta^{n-1}(t)}{(n-1)!} \log ^{n-1} s \rightarrow s^{\alpha\left(-k_{\perp}^{2}\right)}
$$

(slow moving hadron, yacuum,etc)
... and in space-time assuming Pomeron $\alpha(0)=1$

$$
A\left(s, r_{\perp}\right) \sim \int d^{2} k_{\perp} e^{i k_{\perp} r_{\perp}} e^{\alpha\left(-k_{\perp}^{2}\right) \log s} \sim \frac{1}{\log (s)} e^{-r_{\perp}^{2} / \log (s)} \quad \text { hadron swells }
$$

$$
\Delta E \sim \frac{\mu_{\perp}^{2}}{x(1-x) p_{z}}
$$

$$
p=0
$$

* long lived fluctuations finite <x>

$$
\langle x\rangle^{\langle n\rangle}=\frac{p_{z}}{\mu} \quad\langle n\rangle \sim \log (s)
$$

Growing Radius, partons, saturation,...

* Where does to parton model come from
(fast moving, hadron, parton,etc)
adding correlated partons is beneficial (expansion not in g^{2} but in $\mathrm{g}^{2} \log \mathrm{~s}$)

$$
\frac{g^{2}}{s} \sum_{n} \frac{\beta^{n-1}(t)}{(n-1)!} \log ^{n-1} s \rightarrow s^{\alpha\left(-k_{\perp}^{2}\right)}
$$

$$
\alpha(t)=-1+\beta(t)
$$

... and in space-time assuming Pomeron $\alpha(0)=1$

$$
A\left(s, r_{\perp}\right) \sim \int d^{2} k_{\perp} e^{i k_{\perp} r_{\perp}} e^{\alpha\left(-k_{\perp}^{2}\right) \log s} \sim \frac{1}{\log (s)} e^{-r_{\perp}^{2} / \log (s)} \quad \text { hadron swells }
$$

$$
\Delta E \sim \frac{\mu_{\perp}^{2}}{x(1-x) p_{z}}
$$

$$
\begin{array}{c:c:c}
p_{z} \rightarrow \infty & (1-x) p_{z} \hat{} \quad\langle x\rangle^{\langle n\rangle}=\frac{p_{z}}{\mu} \quad\langle n\rangle \sim \log (s), ~
\end{array}
$$

random walk in transverse space

$$
*\left\langle r_{\perp}\right\rangle \sim \sqrt{\langle n\rangle \frac{1}{\mu_{\perp}}} \sim \log ^{1 / 2}(s)
$$

Growing Radius, partons, saturation,...

* Where does to parton model come from
(fast moving, hadron, parton,etc)
adding correlated partons is beneficial (expansion not in g^{2} but in $\mathrm{g}^{2} \log \mathrm{~s}$)

$$
\frac{g^{2}}{s} \sum_{n} \frac{\beta^{n-1}(t)}{(n-1)!} \log ^{n-1} s \rightarrow s^{\alpha\left(-k_{\perp}^{2}\right)}
$$

(slow moving hadron,vacuum,etc) $\quad \alpha(t)=-1+\beta(t)$
... and in space-time assuming Pomeron $\alpha(0)=1$

$$
A\left(s, r_{\perp}\right) \sim \int d^{2} k_{\perp} e^{i k_{\perp} r_{\perp}} e^{\alpha\left(-k_{\perp}^{2}\right) \log s} \sim \frac{1}{\log (s)} e^{-r_{\perp}^{2} / \log (s)} \quad \text { hadron swells }
$$

$$
\Delta E \sim \frac{\mu_{\perp}^{2}}{x(1-x) p_{z}}
$$

interaction when commensurate momenta

$$
p=0
$$

random walk in transverse space

* long lived fluctuations finite <x>

$$
*\left\langle r_{\perp}\right\rangle \sim \sqrt{\langle n\rangle \frac{1}{\mu_{\perp}}} \sim \log ^{1 / 2}(s)
$$

* large-s behavior universal (Pomeron = vacuum pole, universal mid-rapidity)

$$
\begin{array}{c:c:c}
p_{z} \rightarrow \infty & (1-x) p_{z} \hat{} & \langle x\rangle^{\langle n\rangle}=\frac{p_{z}}{\mu} \quad\langle n\rangle \sim \log (s),
\end{array}
$$

Growing Radius, partons, saturation,...

* Where does to parton model come from
(fast moving, hadron, parton,etc)
adding correlated partons is beneficial (expansion not in g^{2} but in $\mathrm{g}^{2} \log \mathrm{~s}$)

$$
\frac{g^{2}}{s} \sum_{n} \frac{\beta^{n-1}(t)}{(n-1)!} \log ^{n-1} s \rightarrow s^{\alpha\left(-k_{\perp}^{2}\right)}
$$

(slow moving hadron,vacuum,etc) $\quad \alpha(t)=-1+\beta(t)$
... and in space-time assuming Pomeron $\alpha(0)=1$

$$
A\left(s, r_{\perp}\right) \sim \int d^{2} k_{\perp} e^{i k_{\perp} r_{\perp}} e^{\alpha\left(-k_{\perp}^{2}\right) \log s} \sim \frac{1}{\log (s)} e^{-r_{\perp}^{2} / \log (s)} \quad \text { hadron swells }
$$

$$
\Delta E \sim \frac{\mu_{\perp}^{2}}{x(1-x) p_{z}}
$$

$$
\begin{array}{c:c:c}
p_{z} \rightarrow \infty & (1-x) p_{z} \hat{} & \langle x\rangle^{\langle n\rangle}=\frac{p_{z}}{\mu} \quad\langle n\rangle \sim \log (s),
\end{array}
$$

random walk in transverse space
interaction when commensurate momenta

* long lived fluctuations finite <x>

$$
*\left\langle r_{\perp}\right\rangle \sim \sqrt{\langle n\rangle \frac{1}{\mu_{\perp}}} \sim \log ^{1 / 2}(s)
$$

* large-s behavior universal (Pomeron = vacuum pole, universal mid-rapidity)

$$
p=0
$$

Џ

$\langle M| H|M\rangle=O(1)$
$\frac{1}{\sqrt{N_{C}}} N_{C} \frac{1}{\sqrt{N_{C}}}=1$

$$
\left\langle M_{1}\right| H\left|M_{2} M_{3}\right\rangle=g=O\left(1 / \sqrt{N_{C}}\right)
$$

$$
\begin{aligned}
& \sim\left(\frac{1}{N_{c}}\right)^{Y} \times N_{c}=\frac{1}{N_{c}} \\
& = \\
& \sim \frac{\Gamma}{m^{2}-s-i \Gamma} \quad \Gamma=O\left(1 / N_{c}\right)=g^{2}
\end{aligned}
$$

Resonance

Dualities

planar diagrams may be considered as either s-channel or t-channel

Regge phenomena : sum of t-channel resonances determines large-s behavior of the sOchannel and vice versa.

In K-p scattering imaginary parts of a2
 and rho add up
 In K+p they cancel!

$$
\begin{gathered}
\mathrm{a}_{2} \sim 1+\exp (\mathrm{i} \pi a(\mathrm{t})) \\
\rho \sim 1-\exp (\mathrm{i} \pi a(\mathrm{t}))
\end{gathered}
$$

$$
\rho+a_{2}
$$

$$
\rho-a_{2}
$$

ЏI moanaunversiry Jefferson Lab

Does it work ?

In K-p scattering imaginary parts of a2 and rho add up In K+p they cancel!
$\mathrm{a}_{2} \sim 1+\exp (\mathrm{i} \pi a(t))$
$\rho \sim 1-\exp (\mathrm{i} \pi a(\dagger))$

$\rho+a_{2}$
$\rho-a_{2}$

$\mathrm{a}_{2} \sim 1+\exp (\mathrm{i} \pi a(t))$
$\rho \sim 1-\exp (\mathrm{i} \pi a(\dagger))$

In K-p scattering imaginary parts of a2 and rho add up In K+p they cancel !

dibaryon
u c
u
diquark + di-antiquark
$3 \times \overline{3}=8+1$

2 Mesons

$3 \times \overline{3}=8+1$

glueball
cinnef
$q \bar{q} g$ hybrid

Standard argument for non-existence of multi quark sates: they can fall apart to ordinary mesons and baryons

For example 2 quarks and 2 anti quarks can rearrange into 2 quark-antiquark pairs

But confinement requires quarks are connected by flux tubes and it is possible that certain multi quark configurations are more favorable than "fall apart configurations"

2 di quarks $=$ teraquark

Talk by G.Rossi
Hadronic states \rightarrow irreducible gauge invariant operators in QCD

Table IIa
Simplest mesons and baryons : colour structure and string picture

HADRON	gauge invariant operator	STRING PICTURE
$M_{2}=q \bar{q}$ meson	$\mathrm{q}^{j}{ }_{2}\left(x_{2}\right)\left[p \exp \left(i g \int_{x_{1}}^{x_{2}} A_{\mu} d x^{\mu}\right)\right]_{j_{2}}^{j_{1}} q_{j_{1}}\left(x_{1}\right)$	
$M_{0}=$ quarkless	$\operatorname{Tr}\left[\mathrm{P} \exp \left(\mathrm{ig}_{\mathrm{g}} \oint \mathrm{A}_{\mathrm{H}} \mathrm{dx}{ }^{\mu}\right)\right]$	
$B_{3}=q q q$ baryon	$\begin{aligned} & j_{1} j_{2} j_{3}\left[P \exp \left(i g \int_{x_{1}}^{x} A_{\mu} d x^{\mu}\right) q\left(x_{1}\right)\right]_{j_{1}} \\ & {\left[P \exp \left(i g \int_{x_{2}}^{x} A_{\mu} d x^{\mu}\right) q\left(x_{2}\right)\right]_{j_{2}}\left[P \exp \left(i g \int_{x_{3}}^{x} A_{\mu} d x^{\mu}\right) q\left(x_{3}\right)\right]_{j_{3}}} \end{aligned}$	

Other multiquark states
(from G. C. Rossi \& GV, Phys. Rep. 1982)

pentaquark dibaryon

${ }^{(a)} s^{\prime}$ is the invariant mass of the final state excluding the leading baryons.
${ }^{\text {th }}$ To estimate the s-behaviour we have taken $\alpha_{\mathrm{R}}=0.5$.
凹

Contribution to $\mathrm{B} \overline{\mathrm{B}}$ annihilation $\left(\mathrm{N}_{\mathrm{c}}=3\right)$
s-channel mesons are dual to t channel tetra quarks

$B \bar{B} \rightarrow B \bar{B}$ Junction duality diagrams annihilation	s-channel formation	Multiplicity	t-channel ${ }^{(\text {a) }}$ exchange	Slope
	1qã-jet	$\bar{n}(s) \simeq \bar{n}_{\mathrm{e}^{+} \mathrm{c}^{-}(s)}$	$\begin{aligned} & s^{\alpha\left(M_{4}^{\prime}\right)-1} \sim s^{-3 / 2} \\ & \text { Regge pole } \end{aligned}$	$\alpha^{\prime}\left(\mathrm{M}_{4}^{J}\right) \sim \alpha^{\prime}{ }_{\mathrm{R}}$
	$2 q 9]^{-j e t s}$	$\bar{n}(s) \simeq 2 \bar{n}_{\mathrm{e}^{+} \mathrm{e}^{-}-(s / 4)}$	$\begin{aligned} & s^{\alpha\left(M_{2}^{\prime}\right)-1} \sim s^{-1} \\ & \text { Regge pole } \end{aligned}$	$\alpha^{\prime}\left(\mathbf{M}_{2}^{\prime}\right) \sim \frac{1}{2} \alpha^{\prime}{ }_{\mathrm{R}}$
	$3 q \bar{q}-$ jets	$\bar{n}(s)=3 \bar{n}_{\mathrm{e}^{+} \mathrm{e}}-(s / 9)$	$s^{\alpha\left(M_{0}^{\prime}\right)-1} \sim s^{-1 / 2}$ Regge pole	$\alpha^{\prime}\left(\mathrm{M}_{0}^{\prime}\right) \sim \frac{1}{3} \alpha^{\prime}{ }_{\mathrm{R}}^{\prime}$

[^0]
Veneziano Model

$$
f(s)=\frac{1}{K^{-1}(s)-i \Gamma(s)}
$$

Quadratically spaced radial trajectories
$K(s)=\sum_{r=1}^{\infty} \frac{g_{r}^{2}}{m_{r}^{2}-s} \rightarrow \sum_{r} \frac{1}{r^{2}-s} \sim \frac{\cos (\pi \sqrt{s})}{\sin (\pi \sqrt{s})}$
Linearly spaced radial trajectories (Veneziano)
$K(s) \sim \frac{\Gamma(a-s)}{\Gamma(b-s)}$
Veneziano amplitude : crossing symmetric:

$$
\begin{array}{r}
A(s, t)=\frac{\Gamma(1-\alpha(s)) \Gamma(1-\alpha(t))}{\Gamma(2-\alpha(s)-\alpha(t))} \\
\alpha(s)=a+b s
\end{array}
$$

relativistic h.o.

$\omega \rightarrow 3 \pi$

string of relativistic oscillators

QCD, loop representation, large- N_{c}, AdS/ CFT, ...

string revolution

Other effects of partial wave analyticity

Scalar particle scattering $1+2$-> $3+4$

$$
A_{l}(s)=\int d z_{s} A\left(s, t\left(s, z_{s}\right), u\left(s, z_{s}\right)\right) P_{l}(\cos \theta)
$$

Partial waves have "right hand" singularity (from s) and "left hand" (from t and u)
For example assume equal masses
For $s>4 m^{2}$ integral is finite

$$
t=-\frac{\left(s-4 m^{2}\right)}{2}\left(1-z_{s}\right)
$$

$$
A_{0}(s) \sim \int_{-1}^{1} d z_{s} \frac{1}{m_{e}^{2}+\frac{\left(s-4 m^{2}\right)}{2}\left(1-z_{s}\right)}
$$

For $s<4 m^{2}-m_{e}^{2}$ the detonator crosses 0 within integration limi, implying $\mathrm{A}_{0}(\mathrm{~s})$ has a cut for negative s

Scalar amplitudes have simple singularity structure, but partial waves a much more complicated. They also have kinematical singularities when spin and/or unequal masse are involved

- Thresholds are "windows" to singularities (particles, visual states, forces") located on the nearby unphysical sheet.
- They appear as cusps (if below threshold) or bumps (is above)
bound state : pole on the physical energy plane
virtual state : pole on "unphysical sheet" closest the physical region

Amplitude singularities

- Singularities of partial waves are complicated but have a more direct physical interpretation
- $\mathrm{A}(\mathrm{s}, \mathrm{t}, \mathrm{u})$ has simple singularity structure. Its connection to particles arises through (complicated) partial waves

$$
A_{l}(s)=\frac{1}{2} \int_{-1}^{1} d z_{s} A(s, t(s, z), u(s, z))
$$

Well known examples of cusps

$Q_{0} \sim 100 \mathrm{MeV}<2 m_{\pi} \ll 2 m_{N}$

${ }^{3} S_{1}$ (deuteron) bound state : pole on the physical energy plane
${ }^{1} S_{1}$ virtual state : pole on "unphysical sheet" close the physical region

Classical picture

Coleman-Norton

Example : Pc Kinematics

m_{1}	m_{3}	
$m_{ \pm}=-m_{e}^{2}+p_{2}^{2}+p_{3}^{2}+\frac{\left(m_{e}^{2}+p_{1}^{2}-p_{3}^{2}\right)\left(m_{e}^{2}+p_{4}^{2}-p_{2}^{2}\right)}{2 m_{e}^{2}} \pm \frac{\lambda^{1 / 2}\left(m_{e}^{2}, p_{1}^{2}, p_{3}^{2}\right) \lambda^{1 / / 2}\left(m_{e}^{2}, p_{2}^{2}, p_{4}^{2}\right)}{2 m_{e}^{2}}$		
m_{2}	m_{4}	

- Singularities of $\mathrm{b}(\mathbf{s})$ are at $\mathbf{s}=\mathbf{s}_{ \pm} \quad b_{l}(s)=\frac{1}{2} \int_{-1}^{1} d z_{s} \frac{P_{l}\left(z_{s}\right)}{m_{\Lambda}^{2}-t(s, z)}$
- In QCD light quark resonances appear clearly up to $\sim 2 \mathrm{GeV}$ But one expected there to be an infinite number of them.
- At higher masses they are harder to find. To help discriminating between various hypotheses one should "consult" with expectations from quark model and duality arguments.
- Duality arguments are consistent with existence of multi quark hadrons.
- Veneziano model and generalizations could be used to implement these ideas in data analysis.
- Unlike non-relativistic theory, besides resonance poles one should work about "left-hand cuts' (cusps), however, so far there is no unambiguous evidence for them in the data.

Thank you for your attention!

[^0]: ${ }^{\text {(a) }}$ To estimate the s-behaviour we have taken $\alpha_{\mathrm{B}} \approx 0$.

