Experimental Charm Physics

Dr Marco Gersabeck The University of Manchester

The 2018 Weihai High-Energy Physics School, Weihai, 21-23 August 2018

Your lecturer

Research Associate on the LHCb experiment

Job Reference : S&E-12555 Location : Oxford Road, Manchester Closing Date : 17/09/2018

ShanghaiRanking's Global Ranking of Academic Subjects 2018 - Physics

Weihai Summer School

2018 🛊

Scope

- Experimental charm physics
 - Mostly CP violation, other symmetries, and rare decays
 - ➡ I'm on LHCb, so some bias is likely
 - Experiments are based on theory, so we'll also cover the basics there
 - Leaving the specifics to the dedicated lectures

Further reading

• Books

- *Sozzi: Discrete Symmetries and CP violation
- Kleinknecht: Uncovering CP violation
- Giorgi et al.: CP violation: from Quark to Leptons
- Bigi and Sanda: CP violation
- Branco Lavoura: CP violation
- Publication
 - *Gersabeck: Introduction to charm physics

*Main sources for this course

Outcomes

- By the end you should expect
 - To be able to connect charm mixing and CP violation observables to the corresponding theory parameters
 - To have an up-to-date overview of the relevant measurements, including selected analysis methods and systematic uncertainties
 - To have an overview of current and future experiments

Outline

- I. Introduction and charm mixing theory
- 2. Experiments, indirect CP violation, and time-dependent two-body measurements
- 3. Time-dependent multi-body measurements and superweak constraint
- 4. Direct CP violation theory and two-body measurements
- 5. CP violation in multi-body decays, techniques and results, and other decays
- 6. Rare decays, other symmetries, and future directions

- Charm introduction
- Neutral mesons Mixing

Charm's first time

The very beginning

Prog. Theor. Phys. Vol. 46 (1971), No. 5

A Possible Decay in Flight of a New Type Particle

Kiyoshi NIU, Eiko MIKUMO and Yasuko MAEDA*

Institute for Nuclear Study University of Tokyo *Yokohama National University

August 9, 1971

• Cosmic showers

MANCHESTER 1824

The University of Manchester

- Observed in emulsion chambers
- 500 hours aboard a cargo plane

Assumed decay mode	$M_x{ m GeV}$	$T_{x} \sec$
$X \to \pi^0 + \pi^{\pm}$	1.78	2.2×10^{-14}
$X \to \pi^0 + p$	2.95	3.6×10^{-14}

The Nobel beginning

MANCHESTER

The University of Manchester

Charm's second time

Spectroscopy

- Strange peaks started appearing in 2003/04
- Matching with quark model predictions still difficult
 - Many gaps in possible states
 - Some observed states may be exotics
- Different production mechanisms
 - Prompt vs B decays

S. Olsen, Front. Phys. 10 (2015) 101401

Could Charm's third time the real charm?

Ikaros Bigi, arXiv:0902.3048 [hep-ph]

Charm: hardly a CKM triangle

- Mixing
 - Discovered 2007
 - Huge cancellations
 - Theoretically difficult
- CP violation
 - Predictions even smaller
- Only up-type quark to form mixing neutral mesons
 - Unique physics access
- Need highest precision
- Huge LHCb dataset
 - Blessing and a curse

Let's have a closer look

Lecture 2

Lecture 2

- Experiments overview and charm production
- Flavour-tagging in charm
- Mixing and indirect CP violation measurements

Two-body

Asymmetric collisions

MANCHESTER 1824

The University of Manchester

MANCHESTER 1824 The University of Manchester

Matter dominance

- pp collisions
- Matter-antimatter asymmetric
- Causes production asymmetries
 - Not present at
 Tevatron or
 B-factories

Enter LHCb

JINST 3 (2008) S08005, Int. J. Mod. Phys. A 30 (2015) 1530022

Weihai Summer School

24

Boost

- Average βγ
 LHCb: O(10)
 - ➡ BaBar/Belle: ~ I
- Heavy flavour particles fly few mm
- First material at 5mm radius
- Decay time resolution
 ~0.1TD

Flavour tagging

- Can distinguish D⁰ from D
 ⁰ in two ways
 - ⇒ Charge of soft pion from strong decay $D^{*+} \rightarrow D^0 \pi_s^+$ Π_s^+
 - ⇒ Charge of muon from semi-leptonic decay $B \rightarrow D^0 \mu^- X$ $B \rightarrow \mu^-$

Flavour tagging

- Can distinguish D⁰ from D
 ⁰ in two ways
 - ⇒ Charge of soft pion from strong decay $D^{*+} \rightarrow D^0 \pi_s^+$

• 4 Tm dipole magnet

 π_{s}^{+}

 \mathbf{D}_{0}

Need
 ~2 GeV/c
 momentum

⇒ Charge of muon from semi-leptonic decay $B \rightarrow D^0 \mu^- X$ $B \rightarrow D^0 \mu^- X$ σ(p)/p
 0.4% - 0.6%
 @5-100 GeV/c
 momentum

Flavour tagging

- Prompt D*-tagged
 - Larger yields
 - Background from D-from-B
- Muon-tagged
 - Smaller yields (somewhat)
 - Larger level of combinatorial background
 - Independent systematic uncertainties
- Doubly-tagged
 - The best of both worlds
 - Smallest samples

MANCHESTER 1824 The University of Manchester Flavour tagging and decay times

Particle detection

• Excellent charged particle ID

Two ring-imaging Cherenkov detectors

- But even the best detector can challenge you
 - Detector asymmetries
 - Cancel left-right asymmetries by swapping dipole field
 - Interaction asymmetries
 - Measure through control modes

Neutral particles

- Need ≥2 charged particles to define decay vertex
- Additional challenges from neutrals
- K_s and Λ
 - Long flight distance: Most escape VELO acceptance
- π⁰
 - Coarse granularity:
 Calorimeter clusters not always separated
- π.

- γ
 - Busy calorimeter:
 Probability of confusion with electrons or π⁰

30

Weihai Summer School

31

Marco Gersabeck

Production

- Charm production as precision measurements
 - Constrain PDFs and QCD processes
 - Puts direct constraints on charm production in atmosphere
 - High-energy neutrino background, e.g. for IceCube
- Production in different collisions crucial in identifying exotica

In numbers

Experiment	√S	σ _{acc} (D ⁰)	L	N(D ⁰)
BESIII	3.77 GeV	8 nb	3 fb-1	2.4×10 ⁷
Belle II	10.6 GeV	1.45 nb	50 ab-1	7.5×10 ¹⁰
LHCb Run 1	7-8 TeV	1.5 mb	3 fb-1	4.5×10 ¹²
LHCb Run 2	13 TeV	3 mb	6 fb-1	1.8×10 ¹³