Physics with an Electron-Ion Collider *III: 1-d Structure: Parton Distributions*

Jian-ping Chen (陈剑平), Jefferson Lab, Virginia, USA Pre-Workshop Lectures, Hadron-China2018, July 25, 2018

Deep-Inelastic Scattering:
 Unpolarized Structure Functions → Parton Distribution Functions
 High-x physics
 Sea asymmetry

Deep-Inelastic Scattering Unpolarized Nucleon Structure Parton Distributions: Flavor Structure: Valence and Sea Gluons

Inelastic Scattering

Considerably more complex, indeed!

Simplify - consider inclusive inelastic scattering,

$$d\sigma \propto \left\langle |\mathcal{M}|^2 \right\rangle = \frac{g_e^4}{q^4} L_{\text{lepton}}^{\mu\nu} W_{\mu\nu \,\text{nucleon}}, \qquad W_{\mu\nu \,\text{nucleon}}(p,q)$$

Again, two (parity-conserving, spin-independent) structure functions:

 W_1, W_2 or, alternatively expressed, F_1, F_2

which may depend on two invariants,

$$Q^2 = -q^2, \qquad x = -\frac{q^2}{2q.p}, \ 0 < x < 1$$

So much for the structure, the physics is in the structure functions.

Elastic scattering off Dirac Protons

Compare:

$$L_{\rm lepton}^{\mu\nu} = 2\left(k^{\mu}k'^{\nu} + k^{\nu}k'^{\mu} + g^{\mu\nu}(m^2 - k \cdot k')\right)$$

with:

$$K_{\mu\nu\,\text{nucleon}} = K_1 \left(-g_{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2} \right) + \frac{K_2}{M^2} \left(p^{\mu} + \frac{1}{2}q^{\mu} \right) \left(p^{\nu} + \frac{1}{2}q^{\nu} \right)$$

which uses the relations between $K_{1,2}$ and $K_{4,5}$

Then, e.g. by substitution of k' = k - q in L:

$$K_1 = -q^2, \quad K_2 = 4M^2$$

Note, furthermore, that inelastic cross section reduces to the elastic one for:

$$W_{1,2}(q^2, x) = -\frac{K_{1,2}(q^2)}{2Mq^2}\delta(x-1)$$

Elastic scattering off Dirac Partons

Imagine *incoherent* scattering off *Dirac* Partons (quarks) q:

$$W_1^q = rac{e_q^2}{2m_q}\delta(x_q-1), \quad W_2^q = -rac{2m_q e_q^2}{q^2}\delta(x_q-1) \text{ and } x_q = -rac{q^2}{2q\cdot p_q}$$

and, furthermore, suppose that the quarks carry a fraction, z, of the proton momentum

$$p_q = z_q p$$
, so that $x_q = \frac{x}{z_q}$ (also note $m_q = z_q M$!)

which uses the relations between $K_{1,2}$ and $K_{4,5}$

Now,

$$MW_1 = M \sum_q \int_0^1 \frac{e_q^2}{2M} \delta(x - z_q) f_q(z_q) dz_q = \frac{1}{2} \sum_q e_q^2 f_q(x) \equiv F_1(x)$$
$$-\frac{q^2}{2Mx} W_2 = \sum_q \int_0^1 x e_q^2 \delta(x - z_q) f_q(z_q) dz_q = x \sum_q e_q^2 f_q(x) \equiv F_2(x)$$

Two important observable consequences,

Bjorken scaling: $F_{1,2}(x)$, not $F_{1,2}(x,Q^2)$ Callan-Gross relation: $F_2 = 2xF_1(x)$

Deep-Inelastic Electron Scattering

Discovery of Quarks (Partons)

Point particles cannot be further resolved; their measurement does not depend on wavelength, hence Q^2 ,

Spin-1/2 quarks cannot absorb longitudinally polarized vector bosons and, conversely, spin-0 (scalar) quarks cannot absorb transversely polarized photons.

J.T. Friedman

Nobel Prize 1990

H.W. Kendall

Callan-Gross relation:

Deep-Inelastic Neutrino Scattering

Picture from CERN...

Gargamelle bubble chamber, observation of weak neutral current (1973).

Charged-current DIS!

Nucl.Phys. **B73** (1974) 1 Nucl.Phys. **B85** (1975) 269 Nucl.Phys. **B118** (1977) 218 Phys.Lett. **B74** (1978) 134

Deep-Inelastic Scattering - Fractional Electric Charges

U

Neutral-current (photon) DIS:

$$F_{2} = x \sum_{q} e_{q}^{2}(q + \bar{q}), \quad p: uud, \quad n: ddu$$
$$F_{2}^{N} = x \frac{e_{u}^{2} + e_{d}^{2}}{2} (u + \bar{u} + d + \bar{d})$$

Charged-current DIS:

$$F_2^{
u p} = 2x(d+ar{u}), \quad F_2^{
u n} = 2x(u+ar{d})$$

 $F_2^{
u N} = x(u+ar{u}+d+ar{d})$

Deep-Inelastic Scattering - Fractional Electric Charges

e

U

Neutral-current (photon) DIS:

$$egin{aligned} F_2 &= x \sum e_q^2(q+ar{q}), \quad p:uud, \quad n:ddu \ F_2^N &= x \, rac{e_u^2 + e_d^2}{2} \, (u+ar{u}+d+ar{d}) \end{aligned}$$

 $Q^{2} = \frac{\left[\int^{F_{2}} \sigma x\right]}{\frac{3\pi}{4G^{2}M} \frac{\sigma^{\nu} + \sigma^{\overline{\nu}}}{E_{\nu}}} = \frac{0.303 \pm 0.04}{\frac{\sigma^{\nu} + \sigma^{\overline{\nu}}}{E_{\nu}}}$ $0.6 - \frac{\Delta = CG (ref. 4)}{\Phi = This experiment}$

Mean Square Charge of Interacting Constituents (S=O)

Charged-current DIS:

$$F_2^{\nu p} = 2x(d + \bar{u}), \quad F_2^{\nu n} = 2x(u + \bar{d})$$
$$F_2^{\nu N} = x(u + \bar{u} + d + \bar{d})$$

Ratio:

$$\frac{F_2^N}{F_2^{\nu N}} = \frac{1}{2}(e_u^2 + e_d^2) = \frac{5}{18} \simeq 0.28$$

Deep-Inelastic Scattering - Momentum Conservation

Gargamelle: 0.49 +/- 0.07 SLAC: 0.14 +/- 0.05 Quarks carry half of the nucleon momentum!

3-jet events at PETRA

Recall the intro on colour:

Observation of its higher order process,

marks the discovery of the gluon.

Mom. Conservation: *Gluons carry the other half of the nucleon momentum.*

X

 $F_2(x)$

Nucleon Structure

Three quarks with 1/3 of total proton momentum each.

Three quarks with some momentum smearing.

The three quarks radiate gluons to lower momentum fractions **x**.

Quark-Parton Model

$$F_{1}(x) = \frac{1}{2} \sum_{i} e_{i}^{2} f_{i}(x) \qquad g_{1}(x) = \frac{1}{2} \sum_{i} e_{i}^{2} \Delta q_{i}(x)$$
$$f_{i}(x) = q_{i}^{\uparrow}(x) + q_{i}^{\downarrow}(x)$$
$$\Delta q_{i}(x) = q_{i}^{\uparrow}(x) - q_{i}^{\downarrow}(x)$$

 $q_i\left(x
ight)$ quark momentum distributions of flavor i

 $\uparrow(\downarrow)$ parallel (antiparallel) to the nucleon spin

 $F_2 = 2xF_1$ $g_2 = 0$

$$A_1(x) = \frac{g_1(x)}{F_1(x)} = \frac{\sum \Delta q_i(x)}{\sum f_i(x)}$$

QCD Radiation

Schematically, DGLAP equations:

$$\frac{dq_f(x,Q^2)}{d \ln Q^2} = \alpha_s \left[q_f \stackrel{\leftarrow}{\propto} P_{qq} + g \stackrel{\leftarrow}{\rho} \times P_{gq} \right]$$

strong coupling constant

That is, the change of quark distribution q with Q^2 is given by the probability that q and g radiate q.

Similarly, for gluons:

$$\frac{dg(x,Q^2)}{d \ln Q^2} = \alpha_s \left[\sum q_f \propto P_{qg} + g \times P_{gg} \right]$$

Unpolarized Structure Function F₂

- Bjorken Scaling
- Scaling Violation
- Gluon radiation –
- QCD evolution NLO: Next-to-Leading-Order
- One of the best experimental tests of QCD

Parton Distribution Functions (CTEQ6)

Brief Summary:

DIS probe nucleon or nuclear structure, described in terms of quarks and gluons,

Feynman's parton model - point like partons, which

behave *incoherently* - combined with QCD radiation are remarkably successful in describing DIS cross sections.

DIS

0000

QCD evolution allows one to relate quantitatively processes at different scales Q^2 ,

Parton distributions *f(x)* are intrinsic properties of the nucleon and (thus) process independent. *This is great for RHIC, LHC, and many other areas.*

Gluons are a very significant part of the nucleon

Structure Functions at High *x*

Valence Quark Distributions

Why Are PDFs at High x Important?

- Valence quark dominance: simpler picture
 - -- direct comparison with nucleon structure models SU(6) symmetry, broken SU(6), di-quark, DSE
- $x \rightarrow 1$ region amenable to pQCD analysis
 - -- hadron helicity conservation?
 - -- Quark orbital angular momentum
- Clean connection with QCD, via lattice moments
- Input for search for physics BSM at high energy collider
 - -- evolution: high x at low $Q^2 \rightarrow Iow x$ at high Q^2
 - -- small uncertainties amplified
 - -- example: HERA 'anomaly' (1998)
- Input to nuclear and high energy calculations

Predictions for High x

Proton Wavefunction (Spin and Flavor Symmetric)

$$\begin{vmatrix} p \\ \rangle = \frac{1}{\sqrt{2}} \begin{vmatrix} u \\ (ud)_{S=0} \end{vmatrix} + \frac{1}{\sqrt{18}} \begin{vmatrix} u \\ (ud)_{S=1} \end{vmatrix} - \frac{1}{3} \begin{vmatrix} u \\ (ud)_{S=1} \end{vmatrix} - \frac{\sqrt{2}}{3} \begin{vmatrix} d \\ (uu)_{S=1} \end{vmatrix}$$

Nucleon Model	F_2^n/F_2^p	d/u	∆u/u	∆d/d	A_1^n	A ₁ ^p
SU(6)	2/3	1/2	2/3	-1/3	0	5/9
Scalar diquark	1/4	0	1	-1/3	1	1
pQCD	3/7	1/5	1	1	1	1

Hadronic physics output 1: d/u ratio

→ d/u ratio at high x of interest for nonperturbative models of nucleon

CJ15 MMHT14 0.8**CT14** JR14 0.6n/p 0.4+ SU(6) helicity 0.2dominance scalar 0 diquarks 0.20.40.60.80 x

 \rightarrow CJ15:

more flexible parametrization

 $d \rightarrow d + b \, x^c \, u$

allows finite,

nonzero x = 1 limit

(standard PDF form gives 0 or ∞ unless $a_2^d = a_2^u$)

MMHT14: fitted deuteron corrections
 standard d parametrization
 → "UNDERCONSTRAINED"

JR14 (and ABM12):

Similar deuteron corrections standard *d* ; no lepton/W asym. → "OVERCONSTRAINED"

CT14:
$$\beta_u = \beta_d \implies d/u$$
 finite
No nuclear corrections

Longstanding issue in proton structure **Proton PVDIS:** *d/u at high x*

$$A_{PV} = \frac{G_F Q^2}{\sqrt{2\pi\alpha}} [a(x) + f(y)b(x)]$$

SU(6): d/u~1/2 n SU(6): d/u~0

Broken SU(6): $d/u\sim 0$ Perturbative QCD: $d/u\sim 1/5$

$$a^{P}(x) \approx \frac{u(x) + 0.91d(x)}{u(x) + 0.25d(x)}$$

Projected 12 GeV d/u extractions

- <u>3 JLab 12 GeV experiments</u>:
- CLAS12 BoNuS spectator tagging
- BigBite DIS ³H/³He ratio
- SoLID PVDIS ep
 - The SoLID extraction of *d/u* is directly from *ep* DIS:
 - No nuclear corrections
 - No assumption of charge symmetry

Sea Quark Distributions

Sea Asymmetry (d_bar/u_bar)

Flavor structure of the proton sea

□ The proton sea is not SU(3) symmetric!

Challenges for $\overline{d}(x) - \overline{u}(x)$

□ All known models predict no sign change!

31

Summary

- Electron Scattering to study Nucleon Structure
- Deep-Inelastic Scattering
 Unpolarized Structure functions → Parton Distributions
 High-x, valance quark distributions, d/u
 Sea distributions: d_bar/u-bar asymmetry

Physics with an Electron-Ion Collider II: Nucleon 3-d Structure

Jian-ping Chen (陈剑平), Jefferson Lab, Virginia, USA Pre-Workshop Lectures, Hadron-China2018, July 25, 2018

- Unified Picture of Nucleon Structure: Wigner Distribution
- GPDs: 3-d (2-d spatial+1-d momentum) distributions
- TMDs:3-d momentum distributions
- Transversity and tensor charge
- SoLID program
- EIC program

Nucleon Spin Structure Study

- 1980s: EMC (CERN) + early SLAC quark contribution to proton spin is very small $\Delta \Sigma = (12+-9+-14)\% !$ 'spin crisis'
- 1990s: SLAC, SMC (CERN), HERMES (DESY) $\Delta \Sigma = 20-30\%$, the rest: gluon and quark orbital angular momentum $\frac{1}{2} = \frac{1}{2} \sum_{f} (q_{f}^{+} - q_{f}^{-}) + L_{q} + \Delta G + L_{g}$ gauge invariant $(\frac{1}{2})\Delta \Sigma + \mathcal{L}q + J_{G} = 1/2$ Bjorken Sum Rule verified to <10% level
 - 2000s: COMPASS (CERN), HERMES, RHIC–Spin, JLab, ... : $\Delta\Sigma \sim 30\%$; ΔG contributes, orbital angular momentum significant Large-x (valence quark) behavior; Moments and sum rules Needs 3-d structure information to complete the proton spin puzzle

Generalized Parton Distributions (GPDs)

Proton form factors, transverse charge & current densities

Correlated quark momentum and helicity distributions in transverse space - GPDs

Structure functions, guark longitudinal momentum & helicity distributions

Unified View of Nucleon Structure

Wigner distributions

3-D Structure I

Generalized Parton Distributions

3-D Imaging - Two Approaches

TMDs

GPDs

2+1 D picture in momentum space

- intrinsic transverse motion
- spin-orbit correlations- relate to OAM
- non-trivial factorization
- accessible in SIDIS (and Drell-Yan)

2+1 D picture in impact-parameter space

QCDSF collaboration

- collinear but long. momentum transfer
- indicator of OAM; access to Ji's total $J_{q,g}$
- existing factorization proofs
- DVCS, exclusive vector-meson production

Description of Hadron Structure via Generalized Parton Distributions

known information on GPDs

forward limit : ordinary parton distributions

 $H^{q}(x, \xi = 0, t = 0) = q(x)$ unpolarized quark distribution $\tilde{H}^{q}(x, \xi = 0, t = 0) = \Delta q(x)$ polarized quark distribution E^{q}, \tilde{E}^{q} : do NOT appear in DIS \implies additional information first moments : nucleon electroweak form factors

$$P - \Delta/2 \qquad P + \Delta/2 \qquad \int_{-1}^{1} dx \, H^{q}(x,\xi,t) = F_{1}^{q}(t) \quad \text{Dirac} \\ \int_{-1}^{1} dx \, E^{q}(x,\xi,t) = F_{2}^{q}(t) \quad \text{Pauli} \\ \int_{-1}^{1} dx \, \tilde{H}^{q}(x,\xi,t) = G_{A}^{q}(t) \quad \text{axial} \\ \int_{-1}^{1} dx \, \tilde{E}^{q}(x,\xi,t) = G_{P}^{q}(t) \quad \text{pseudo-scalar} \end{cases}$$

Access GPDs through DVCS x-section & asymmetries

Hall A DVCS Experiment Handbag Dominance at Modest Q²

Twist 2 contribution

– – Twist 3 contribution strongly suppressed

The Twist-2 term can be extracted accurately from the cross-section difference Dominance of twist-2 \Rightarrow handbag dominance \Rightarrow DVCS interpretation

3D Images of the Proton's Quark Content

Detailed differential images from nucleon's partonic structure

GPD Study at EIC@HIAF

- Unique opportunity for DVMP (pion/Kaon) flavor decomposition needs DVMP energy reach Q² > 5-10 GeV², scaling region for exclusive light meson production (JLab12 energy not high enough to have clean light meson deep exclusive process)
- Significant increase in range for DVCS combination of energy and luminosity
- Other opportunities: vector meson, heavy flavors?

3-D Structure II

Transverse Momentum-Dependent Distributions

Leading-Twist TMD PDFs

11

Tool: Semi-inclusive DIS (SIDIS)

d

U

d

e

e

Scattering Plane

 \vec{P}_h

- Gold mine for TMDs
- Access all eight leading-twist TMDs through spin-comb. & azimuthalmodulations

d

Tagging quark flavor/kinematics

Leading-Twist TMD PDFs

11

Separation of Collins, Sivers and pretzelocity effects through angular dependence

$$A_{UT}(\varphi_h^l, \varphi_S^l) = \frac{1}{P} \frac{N^{\uparrow} - N^{\downarrow}}{N^{\uparrow} + N^{\downarrow}}$$

= $A_{UT}^{Collins} \sin(\phi_h + \phi_S) + A_{UT}^{Sivers} \sin(\phi_h - \phi_S)$

$$\begin{split} A_{UT}^{Collins} &\propto \left\langle \sin(\phi_h + \phi_S) \right\rangle_{UT} \propto h_1 \otimes H_1^{\perp} \\ A_{UT}^{Sivers} &\propto \left\langle \sin(\phi_h - \phi_S) \right\rangle_{UT} \propto f_{1T}^{\perp} \otimes D_1 \\ A_{UT}^{Pretzelosity} &\propto \left\langle \sin(3\phi_h - \phi_S) \right\rangle_{UT} \propto h_{1T}^{\perp} \otimes H_1^{\perp} \end{split}$$

COMPASS/HERMES: Sivers Asymmetries and Extraction of Sivers Function

JLab 6 GeV Experiment E06-010

 ${}^{3}He^{\uparrow}(\vec{e},e'\pi^{\pm})X$ ${}^{3}He^{\uparrow}(\vec{e},e'K^{\pm})X$

First measurement on n (³He)

- Transversely Polarized ³He Target
- Polarized Electron Beam, 5.9 GeV

Results published in 8 PRL/PRC papers:

- ✓ π^{+-} Collins/Sivers asymmetries: PRL 107:072003(2011) HRS
- ✓ π^{+-} worm-gear asymmetries: PRL 108, 052001 (2012)
- \checkmark π^{+-} pretzelosity asymmetries: PRC 90 5, 055209(2014)
- ✓ *K*⁺⁻ Collins/Sivers asymmetries:PRC 90 5, 05520 (2014)
- ✓ Inclusive hadron SSA: PRC 89, 042201 (2014)
- ✓ Inclusive electron SSA: PRL 113, 022502 (2014)
- ✓ Inclusive hadron DSA: PRC 92, 015207 (2015)
- ✓ π^{+-} SIDIS cross sections: PRC 95, 035209 (2017)

³He (n) Target Single-Spin Asymmetry in SIDIS

E06-010 collaboration, X. Qian at al., PRL 107:072003(2011)

 $\mathbf{n}^{\uparrow}(e,e'h), h=\pi^+,\pi^-$

neutron Collins SSA small Non-zero at highest x for π +

neutron Sivers SSA: negative for $\pi^{+,}$ Agree with Torino Fit

Blue band: model (fitting) uncertainties **Red band**: other systematic uncertainties

Asymmetry A_{LT} Result

J. Huang et al., PRL. 108, 052001 (2012).

To leading twist:

$$A_{\mathrm{LT}}^{\cos(\phi_h-\phi_s)} \propto F_{LT}^{\cos(\phi_h-\phi_s)} \propto g_{1T}^q \otimes D_{1q}^h$$

Worm-Gear Trans helicity

Dominated by L=0 (S) and L=1 (P) interference

- neutron A_{LT} : Positive for π -
- Consist w/ model in signs, suggest larger asymmetry

Precision Study of TMDs: JLab 12 GeV, EIC

- Explorations: HERMES, COMPASS, RHIC-spin, JLab6,...
- From exploration to precision study JLab12: valence region; EIC: sea and gluons
- Transversity: fundamental *PDF*s, tensor charge
- TMDs: 3-d momentum structure of the nucleon
 - \rightarrow information on quark orbital angular momentum
 - \rightarrow information on QCD dynamics
- Multi-dimensional mapping of TMDs
- Precision → high statistics
 - high luminosity and large acceptance

SoLID-Spin: SIDIS on ³He/Proton @ 11 GeV

E12-10-006: Single Spin Asymmetry on Transverse ³He, rating A

E12-11-007: Single and Double Spin Asymmetries on ³He, **rating A**

E12-11-108: Single and Double Spin Asymmetries on Transverse Proton, rating A

Two run group experiments DiHadron and Ay

Key of SoLID-Spin program:
Large Acceptance
+ High Luminosity
→ 4-D mapping of asymmetries
→ Tensor charge, TMDs ...
→ Lattice QCD, QCD Dynamics, Models.

SoLID and EIC: full imaging of nucleons and study QCD

Image the Transverse Momentum of the Quarks

What do we learn from 3D distributions?

 $f(x, \mathbf{k_T}, \mathbf{S_T}) = f_1(x, \mathbf{k_T^2}) - f_{1T}^{\perp}(x, \mathbf{k_T^2}) \frac{\mathbf{k_{T1}}}{M}$

What do we learn from 3D distributions?

$$f(x, \mathbf{k_T}, \mathbf{S_T}) = f_1(x, \mathbf{k_T^2}) - f_{1T}^{\perp}(x, \mathbf{k_T^2}) \frac{\mathbf{k_{T1}}}{M}$$

55

EIC Imaging in 3-d momentum space

Summary on TMD Program

- Exploratory results from 6 GeV neutron experiment
- Unprecedented precision *multi-d* mapping of SSA in valence quark region with SoLID at 12 GeV JLab
- Both polarized n (³He) and polarized proton

Three "A" rated experiments approved + three run-group experiments

- Combining with the world data (fragmentation functions)
 - extract transversity for both *u* and *d* quarks
 - determine tensor charges -> LQCD
 - learn quark orbital motion and QCD dynamics
 - 3-d imaging
- Global efforts (experimentalists and theorists), global analysis
 - much better understanding of 3-d nucleon structure and QCD
- Long-term future: EIC to map sea and gluon SSAs

Summary

- Nucleon Structure Study: Discoveries and Surprises
 Understand strong interaction/nucleon structure: remains a challenge
- Highlights of JLab and EIC program
 Precision EM form factors, proton radius
 Nucleon spin-flavor structure (unpolarized and polarizd, valence, sea)
 3-d Structure: GPDs
 3-d Structure: TMDs, SoLID program
- EIC opens up a new window to study/understand nucleon structure, especially the sea quarks and gluons

Exciting new opportunities \rightarrow lead to breakthroughs?