Highlights of Higgs Results from ATLAS

Haifeng Li (李海峰)

Shandong University

Hadron Physics Workshop, Weihai July 29, 2018

Introduction

• The discovery of the Higgs boson is a triumph of the SM.

- Need to measure the property of Higgs boson with precision
- Probe other decay modes
- Any deviation from SM prediction is a sign of new physics

Status of LHC Data Taking

Haifeng Li (Shandong University)

Status of LHC Data Taking

Status of LHC Data Taking

ATLAS Detector

40 m long, 25 m high. 100 M read-out channels

Haifeng Li (Shandong University)

Higgs Boson Production at LHC

Higgs Boson Decays

LHC Higgs Cross Section Working Group

Decay mode	Branching fraction [%]
$H \rightarrow bb$	57.5 ± 1.9
$H \rightarrow WW$	21.6 ± 0.9
$H \rightarrow gg$	8.56 ± 0.86
$H \to \tau \tau$	6.30 ± 0.36
$H \rightarrow cc$	2.90 ± 0.35
$H \rightarrow ZZ$	2.67 ± 0.11
$H ightarrow \gamma \gamma$	0.228 ± 0.011
$H \rightarrow Z\gamma$	0.155 ± 0.014
$H \rightarrow \mu \mu$	0.022 ± 0.001

 Observations: low BR channels (ZZ→4I, γγ, Zγ and μμ) have better mass resolutions but small rate. Channels with higher BRs (the rest) are challenging experimentally

Higgs Mass

Higgs Boson Mass

arXiv: 1806.00242

- Higgs mass is the only free parameter in BEH mechanism
- Use 36 fb⁻¹ LHC Run 2 data, with $H \rightarrow ZZ \rightarrow 4I$ and $H \rightarrow \gamma\gamma$

Higgs Boson Mass

arXiv: 1806.00242

ATLAS Run1+2 combined: $m_H = 124.97 \pm 0.24 \text{ GeV}$

- Precise object reconstruction is important for this measurement
- $H \rightarrow ZZ$ is still statistics limited; $H \rightarrow \gamma \gamma$ is systematics limited (photon energy scale)

7/29/18

Haifeng Li (Shandong University)

ATLAS Upgrade Phase-0

- Innermost silicon pixel detector layer (IBL)
- 33 mm from beam
- Improve tracking and bjet tagging (~4 times better for light flavor jet rejection)

IBL

Haifeng Li (Shandong University)

B hadron with

transverse direction

p_⊤=50 GeV will

travel 3 mm in the

ttH allows direct probe of top Higgs Yukawa coupling

ttH

arXiv:1806.00425

Combined with Run 1 data, Significance: 6.3σ (5.1σ exp.)

Observation of ttH production mode

H→bb

About 58% of Higgs decay to bb •

0-lepton

q Z۱ q

ATLAS Preliminary

1 lepton, 2 jets, 2 b-tags

 $150 \text{ GeV} \le p_{-}^{V} < 200 \text{ GeV}$

Aala Colimbar

0 lepton, 3 iets, 2 b-tags

s = 13 TeV. 79.8

. p^V_τ ≥ 200 GeV

40 60 80

300

250

Ha /street

- Data

w

100 120

Diboson

Single to

140 160

diboson

z W

Sinale top

Uncertainty

180 200

m_{bb} [GeV]

VH → Vbb (u=1.06

Uncertainty ···· Pre-fit background — SM VH → Vbb × 5

2-lepton

Pre-fit background

HARRY

100

ATLAS-CONF-2018-036

(Run 2 data)

Combine several variables with BDT (m_{bb} , p_T^V , ΔR_{bb} etc.)

H→bb

Event yields

Haifeng Li (Shandong University)

ATLAS-CONF-2018-036

H→bb

Observation of H→bb

 $\int_{q}^{H} \int_{W,Z}^{H} \int_{g}^{g} \frac{\partial \nabla H}{\partial U} \frac{\partial \nabla H}{\partial$

Haifeng Li (Shandong University)

Higgs Couplings to Massive Elementary Particles

$H \rightarrow \mu \mu$ Event Selections

- Data: LHC 2015-2017 pp collisions data, 79.8 fb⁻¹
- Dominant background is Drell-Yan process
- Dedicated categories for ggF and VBF
- Use analytic functions to model signal and background

Event selections

- At least one primary vertex associated with at least two tracks
- Exactly have two muons. Leading muon $p_T > 27$ GeV

ATLAS-CONF-2018-026

- *E_T^{miss}* < 80 GeV. Veto events with any *b*-jet
- Signal region: $110 < m_{\mu\mu} < 160$ GeV

 $H \rightarrow \mu \mu$

Categories make use of better S/\sqrt{B} for different regions

• Signal has more ISR than background. Signal tends to have large $p_T^{\mu\mu}$ than background ATLAS-CONF-2018-026

(1) $p_T^{\mu\mu} < 15 \text{ GeV}$; (2) $15 < p_T^{\mu\mu} < 50 \text{ GeV}$; (3) $p_T^{\mu\mu} > 50 \text{ GeV}$;

 $H \rightarrow \mu \mu$

Categories make use of better S/\sqrt{B} for different regions

- Multivariate analysis method is used for VBF category to get better sensitivity
- 14 variables are used to train a BDT (most sensitive ones: *m_{jj}*, Δη_{jj}, *p^{μμ}_T*, Δ*R_{jj}*)
- Cut on BDT score to have VBF Tight (BDT > 0.885) and VBF Loose (0.685 < BDT < 0.885) 1
- Events with BDT < 0.685 are classified as ggF-like events

7/29/18

 $H \rightarrow \mu \mu$

 $H \rightarrow \mu \mu$

Background $m_{\mu\mu}$ distributions are modelled by

 $f \times [BW(m_{BW}, \Gamma_{BW}) \otimes GS(\sigma_{GS}^{B})](m_{\mu\mu}) + (1 - f) \times e^{A \cdot m_{\mu\mu}} / m_{\mu\mu}^{3},$ Non-central high $p_{T}^{\mu\mu}$ VBF tight

H \rightarrow µµ Results _{ATLAS-CONF-2018-026}

No obvious excess is observed around $m_H = 125 \text{ GeV}$

Upper limit on signal strength	Measurement of signal strength
ObservedExpectedRun-22.12.0	$ \begin{array}{c c} & \hat{\mu} \\ \hline & \text{Run-2} & 0.1^{+1.0}_{-1.1} \end{array} $
Cignificance	

Significance			
		Observed	Expected
	Run-2	0.0 σ	0.9 σ

Combined measurement of Higgs couplings ATLAS-CONF-2018-031

Analysis	Integrated luminosity (fb ⁻¹)
$H \to \gamma \gamma$ (including $t\bar{t}H, H \to \gamma \gamma$)	79.8
$H \rightarrow ZZ^* \rightarrow 4\ell \text{ (including } t\bar{t}H, H \rightarrow ZZ^* \rightarrow 4\ell)$	79.8
$H \rightarrow WW^* \rightarrow e \nu \mu \nu$	36.1
$H \rightarrow \tau \tau$	36.1
$VH, H \rightarrow b\bar{b}$	36.1
$H \rightarrow \mu \mu$	79.8
$t\bar{t}H, H \rightarrow b\bar{b}$ and $t\bar{t}H$ multilepton	36.1

Summary

- ATLAS has performed Higgs measurements using 80 fb⁻¹ LHC Run 2 data
- Observed ttH and VH production modes
- Observed $H \rightarrow bb$ decay mode
- For H→µµ, upper limit is 2.1 times SM prediction at 95% CL
- No obvious deviation from SM is found at Higgs sector at LHC

TA

2.

Higgs mass measurement systematics

Source	Systematic uncertainty in m_H [MeV]
EM calorimeter response linearity	60
Non-ID material	55
EM calorimeter layer intercalibration	55
$Z \rightarrow ee$ calibration	45
ID material	45
Lateral shower shape	40
Muon momentum scale	20
Conversion reconstruction	20
$H \rightarrow \gamma \gamma$ background modelling	20
$H \rightarrow \gamma \gamma$ vertex reconstruction	15
e/γ energy resolution	15
All other systematic uncertainties	10