Exotic States

Formalism 00000 $\psi(2S) \pi^{+}\pi^{-}$

Perspectives & Summary 0000

Theoretical Description of the ${ m e^+e^-} ightarrow \psi({ m 2S}) \, \pi^+ \, \pi^-$

Daniel Molnar

Collaborators: Igor Danilkin and Marc Vanderhaeghen

"10th Workshop on Hadron Physics in China and Opportunities Worldwide" July, 2018

Exotic States

- Naive Quark Model
- Exotic Explanations
- Experimental Results

Formalism

- Cross Section
- Isobar Model
- Unitarity in the s-channel
- Anomalous Threshold

- Z_c(3900)
- Z_c(4024)

4 Perspectives & Summary

• $\psi(2S) \pi^+\pi^-$ Total Cross Section

•
$$e^+e^- \rightarrow J/\psi \ \pi^+\pi^-$$

Summary

●000			0000
	Qu	ark Model	
			Quarks

• Mesons:

$$P = (-1)^{L+1}$$
 $C = (-1)^{L+S}$

L	S	JPC
0	0	0-+
	1	1
1	0	1+-
	1	0^{++} 1^{++} 2^{++}
2	0	2-+
	1	1 2 3

Forbidden Quantum Numbers:

$$0^{--}$$
, 0^{+-} , 1^{-+} , 2^{+-} , \cdots

Heavy Quarks:

$$\frac{d^2}{dr^2}u(r) + 2\mu \left[E - V(r) - \frac{l(l+1)}{2\mu r^2} \right] u(r) = 0$$

Phenomenological Potential:

$$V(r) \simeq -rac{\kappa}{r} + br + ext{spin-terms}$$

Exotic States 0●○○	Formalism 00000		$\psi(2S) \pi^+\pi^-$	Perspectives & Summary 0000	
		S. L. Olsen Front.Phys. (2015)			
		4.6 -			
		4.4 -	$\psi(4^{3}S_{1})$ $\eta_{c}(4^{1}S_{0})$		
		4.2 -	$\mu_{e}(3^{1}P_{1})$ $\psi(2^{3}D_{1})$	$\chi_{c1}(3^3 P_1)$ $\chi_{c2}(3^3 P_2)$	
		(j) 4.0	$\eta_c(3^1S_0)$ $\psi(3^3S_1)$	2 <i>M</i> _{D*}	
		Mass (GeV	<i>h_c</i> (2 ¹ P ₁)	$\frac{\chi_{c0}(2^{0}P_{1})}{\chi_{c0}(2^{0}P_{1})} $	
		-	$\psi''(1^{3}D_{1})$ $\eta_{c}(2^{1}S_{0})$ $\psi'(2^{3}S_{1})$	2 <i>M</i> _D	
		3.6 -	$h_c(1^1 \mathbb{P}_1)$	$\begin{array}{c} & \\ & \chi_{c2}(1^{3}P_{2}) \\ \\ & \chi_{c1}(1^{3}P_{1}) \end{array}$	
		3.4 -		$\chi_{c0}(1^3 P_0)$	

3.2 -

3.0 -

 $\eta_{c}(1^{1}S_{0})$ 0⁻⁺ $J/\psi(1^3S_1)$

1---

1+-

 J^{PC}

 0^{++}

Established cc states

Predicted, undiscovered

 1^{++}

 2^{++}

Exotic States 0●00				
		S. L. Olsen Front.P	hys. (2015)	
	4.6 -			
	4.4	$\eta_c(4^{1}S_0)$ Y(4360) Y(4260) $h_c(3^{1}P_1)$	$\chi_{c1}(3^3P_1)$ $\chi_{c2}(3^3P_2)$	
	4.2 -	χ ₍₄₁₆₀₎ φ(2 ³ D ₁) γ(4	3 ³ P _Ø)	
	(₂)/A	$\eta_c(3^1S_0)$ $\psi(3^3S_1)$	z_s(2 ³ Ps)	$2M_{D^*}$
	Mass (G	$\psi''(1^3D_1)$	$\begin{array}{c} y(2^{2}\mathbf{p}) \\ z^{2}\mathbf{p}_{1} \\ x(3872) \end{array}$	$M_{\rm D} \!\!+\! M_{\rm D} \!*$
		$\eta_c(2^1S_0)$ $\psi'(2^3S_1)$		$2M_{\rm D}$
	3.6 -	$h_c(1^3\mathrm{P}_1)$	$\chi_{c2}(1^{3}P_{2})$ $\chi_{c1}(1^{3}P_{1})$	
	3.4 -	Zech	1 ³ P ₀)	
	3.2 -		Established <i>cc</i> states Predicted, undiscovered	

3.0 -

 $\eta_c(1^1S_0)$

0-+

 $J/\psi(1^3S_1)$

1---

1⁺⁻ J^{PC} Neutral XYZ mesons

 1^{++}

 2^{++}

 0^{++}

Exotic StatesFormalism $\psi(2S) \pi^+ \pi^-$ Perspectives & Summary $0 \oplus 00$ 0000000000000

Alternative explanations:

- Hybrids and Glueballs
- Tetraquark
- Molecular state
- Hadrocharmonium
- Kinematics effects

Exotic StatesFormalism $\psi(2S) \pi^+ \pi^-$ Perspectives & Summary0 = 000000000000

Alternative explanations:

- Hybrids and Glueballs
- Tetraquark
- Molecular state
- Hadrocharmonium
- Kinematics effects

No Unique Structure

No new physics! All interpretations are based on QCD.

Exotic StatesFormalism $\psi(25) \pi^+ \pi^-$ Perspectives & Summary $0 \oplus 00$ 0000000000000

Alternative explanations:

- Hybrids and Glueballs
- Tetraquark
- Molecular state
- Hadrocharmonium
- Kinematics effects

No Unique Structure

No new physics! All interpretations are based on QCD.

Charged Exotic Mesons

- Confirmed in 2013 by Belle and BESIII
- $c\bar{c} + q_i\bar{q}_j$ $(i \neq j)$

Exotic States 0000 00 00 00 00 000 0

(GlueX and Panda)

Exotic States Formalism $\psi(2S) \pi^+ \pi^-$ Perspectives & Summary 0000 0000 0000 0000

$Z_{c}(3900) + Z_{c}(4030)$

- Two charged exotic states!
- No consistent description
- Below K K threshold

BESIII PRD (2017)

Exotic States

Formalism

 $\psi(2S) \pi^{+}\pi^{-}$

Perspectives & Summary 0000

Double Differential Cross Section

$$\frac{\partial^2 \sigma}{\partial s \partial t} = \frac{1}{3} \frac{e^2}{(2\pi)^3} \frac{1}{2^5} \frac{(q^2 + 2m_e^2)}{\sqrt{q^2(q^2 - 4m_e^2)}} \frac{1}{(q^2)^3} \sum_{\lambda_1 \lambda_2} |\mathcal{H}_{\lambda_1 \lambda_2}|^2$$

$$egin{aligned} &\langle \pi\pi\psi(\lambda_2) | \, \mathcal{T} \, | \gamma^*(\lambda_1)
angle = & (2\pi)^4 \delta(q-p_\psi-p_{\pi^+}-p_{\pi^-}) \; \mathcal{H}_{\lambda_1\lambda_2} \end{aligned}$$

Independent Helicity Amplitudes
P-symmetry:
$$\mathcal{H}_{++}$$
, \mathcal{H}_{+-} , \mathcal{H}_{+0} , \mathcal{H}_{0+} and \mathcal{H}_{00}

Isobar Decomposition

$$\mathsf{Im}[h_{\gamma^* \to \psi \ \pi\pi}(s)] = h_{\gamma^* \to \psi \ \pi\pi}(s) \ \rho_{\pi\pi(s)} \ t_{\pi\pi}^*(s)$$

• The pions interaction amplitude can be written in terms of the phase shift:

$$t^*_{\pi\pi}(s)=rac{e^{-i\delta_{\pi\pi}(s)}\sin\delta_{\pi\pi}(s)}{
ho_{\pi\pi}(s)}$$

• Since $h_{\gamma^* \to \psi \pi\pi}(s) = |h_{\gamma^* \to \psi \pi\pi}(s)|e^{i\phi(s)} \implies \phi(s) = \delta_{\pi\pi}(s)$, Watson Theorem

• Therefore, we can use the $\delta_{\pi\pi}(s)$ through the Omnes Function:

$$\Omega_l^J(s) = exp\left[rac{s}{\pi}\int\limits_{4m^2}^{\infty}rac{ds'}{s'}rac{\delta_l^J(s')}{s'-s}
ight]$$

• Partial Wave Helicity Amplitudes have Kinematic Constraints:

$$h^{(0)}_{++}(s)\pm h^{(0)}_{00}(s)\sim (s-(q\pm m_\psi)^2)$$

Dispersion Relation for

$$\implies rac{h_{++}^{(0)}\pm h_{00}^{(0)}-(h_{++}^{(0,Z_c)}\pm h_{00}^{(0,Z_c)})}{(s-(q\pm m_\psi)^2)}\Omega^{-1}(s)$$

$$\begin{split} \bar{h}_{++}^{(0)} &\equiv h_{++}^{(0,Resc)} - h_{++}^{(0,Z_c)} = \Omega(s) \Biggl\{ a(q^2) + b(q^2) s \\ &- \frac{s^2}{\pi} \int_{4m_{\pi}^2}^{\infty} \frac{ds'}{s'^2} Im[\Omega^{-1}(s')] \left[\left(\frac{1}{s'-s} - \frac{s'-q^2 - m_{\psi}^2}{\lambda(s',q^2,m_{\psi}^2)} \right) h_{++}^{(0,Z_c)}(s') - \frac{2qm_{\psi}}{\lambda(s',q^2,m_{\psi}^2)} h_{00}^{(0,Z_c)}(s') \right] \Biggr\}$$

• 2 subtraction constants to reduce the sensitive to high energy.

Anomalous Threshold

- Depending on the kinematics new nonphysical singularities might appear.
- Anomalous singularity position: $s_{\text{anomalous}} = \sum_{i} m_i^2 2m_z^2$
- The anomalous piece that emerges because the anomalous branch point moves onto the first Riemann sheet distorting the integration contour. Effectively, that can be written as

$$\int_{-1}^{1} \frac{dz}{t - m_z^2} = -\frac{2}{k(s)} \log\left(\frac{X(s) + 1}{X(s) - 1}\right) - i\frac{4\pi}{k(s)}\theta(s_1 < s < s_{\text{anomalous}})$$

Cross-Check

Formalism

 The modified dispersion relation with the additional anomalous piece should be the same as the scalar triangle loop calculated via traditional method.

S. Mandelstam, PRL (1960); W. Lucha et al, PRD (2007); M. Hoferichter et al, Mod. Phys. Conf. Ser. (2014)

Exotic States

Formalism 00000 $\psi(2S) \pi^+\pi^-$

Perspectives & Summary 0000

3 $\psi(2S) \pi^+ \pi^-$

Exotic States Formalism $\psi(2S) \pi^+ \pi^-$ Perspectives & Summary 0000 $\psi(2S) \pi^+ \pi^-$ Total Cross Section

 The global normalization from each fit should contain the information about the total cross section:

$$N(q^{2}) = \left| \frac{C_{Y_{1}Z_{c}\pi}C_{Z_{c}\psi\pi}}{q^{2} - M_{Y_{1}}^{2} + iM_{Y_{1}}\Gamma_{Y_{1}}(q^{2})} + \frac{C_{Y_{2}Z_{c}\pi}C_{Z_{c}\psi\pi}}{q^{2} - M_{Y_{2}}^{2} + iM_{Y_{2}}\Gamma_{Y_{2}}(q^{2})}e^{i\phi_{2}} \right|^{2}$$

Information about the strange partner of Zc(3900)

Dai and Pennington PRD (2014)

 Investigating the decays of exotic states is essential to understand their nature.

$\mathrm{e^+e^-} ightarrow \psi$ (2S) $\pi^+ \, \pi^-$

- The model independent $\pi\pi$ -FSI is taken into account using the dispersion theory as well as explicit charged intermediate exotic states a simultaneous description of the invariant mass distributions is given for different e^+e^- center of mass energy regions;
- The ππ-FSI seems to be the main mechanism to describe the ππ-line shape for all the energies;
- The exotic state Zc(3900) is sufficient to explain the data for the lowest energies, whereas for the energies around 4.4 GeV a heavier charged state Zc(4024) clearly would explain the enhancement in the experimental data.

Thank you for listening!

Contact:

- 🛎 Daniel Molnar
- ⊠ d.molnar@uni-mainz.de